Permeability of bacterial spores. IV. Water content, uptake, and distribution
- PMID: 13869667
- PMCID: PMC279394
- DOI: 10.1128/jb.83.5.960-967.1962
Permeability of bacterial spores. IV. Water content, uptake, and distribution
Abstract
Black, S. H. (The University of Michigan, Ann Arbor) and Philipp Gerhardt. Permeability of bacterial spores. IV. Water content, uptake, and distribution. J. Bacteriol. 83:960-967. 1962.-Dormant and germinated spores of Bacillus cereus strain terminalis were examined for water properties. Respectively, they exhibited a mean density of 1.28 and 1.11 g/ml, a water content of 64.8 and 73.0%, and a total water uptake of 66.6 and 75.6%, based on spore weight, or 86.0 and 83.9%, based on spore volume. The results confirmed a previous report that internal and external water are in virtually complete equilibrium, but refuted a prevailing hypothesis that heat resistance is attributable to a dry core. A model of spore ultrastructure that evolved from the cumulative results pictures a moist, dense, heteroporous core. A new hypothesis is formulated as an explanation for thermostability in spores and possibly in other instances; it postulates the occurrence of an insolubly gelled core with cross-linking between macromolecules through stable but reversible bonds so as to form a high-polymer matrix with entrapped free water.
Similar articles
-
Permeability of bacterial spores. III. Permeation relative to germination.J Bacteriol. 1962 Feb;83(2):301-8. doi: 10.1128/jb.83.2.301-308.1962. J Bacteriol. 1962. PMID: 13869666 Free PMC article.
-
Permeability of bacterial spores. I. Characterization of glucose uptake.J Bacteriol. 1961 Nov;82(5):743-49. doi: 10.1128/jb.82.5.743-749.1961. J Bacteriol. 1961. PMID: 13869665 Free PMC article.
-
Permeability of bacterial spores. II. Molecular variables affecting solute permeation.J Bacteriol. 1961 Nov;82(5):750-60. doi: 10.1128/jb.82.5.750-760.1961. J Bacteriol. 1961. PMID: 13897940 Free PMC article.
-
Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals.J Appl Microbiol. 2006 Sep;101(3):514-25. doi: 10.1111/j.1365-2672.2005.02736.x. J Appl Microbiol. 2006. PMID: 16907802 Review.
-
Mechanisms for the prevention of damage to DNA in spores of Bacillus species.Annu Rev Microbiol. 1995;49:29-54. doi: 10.1146/annurev.mi.49.100195.000333. Annu Rev Microbiol. 1995. PMID: 8561462 Review.
Cited by
-
Fructose 1,6-diphosphate-activated L-lactate dehydrogenase from Streptococcus lactis: kinetic properties and factors affecting activation.J Bacteriol. 1977 Jul;131(1):82-91. doi: 10.1128/jb.131.1.82-91.1977. J Bacteriol. 1977. PMID: 17595 Free PMC article.
-
Location and composition of spore mucopeptide in Bacillus species.J Cell Biol. 1963 Mar;16(3):593-609. doi: 10.1083/jcb.16.3.593. J Cell Biol. 1963. PMID: 13999017 Free PMC article.
-
Spatially resolved characterization of water and ion incorporation in Bacillus spores.Appl Environ Microbiol. 2010 May;76(10):3275-82. doi: 10.1128/AEM.02485-09. Epub 2010 Mar 26. Appl Environ Microbiol. 2010. PMID: 20348293 Free PMC article.
-
Water behavior in bacterial spores by deuterium NMR spectroscopy.J Phys Chem B. 2014 Jul 31;118(30):8945-55. doi: 10.1021/jp5025119. Epub 2014 Jul 18. J Phys Chem B. 2014. PMID: 24950158 Free PMC article.
-
Heat resistance of bacterial spores correlated with protoplast dehydration, mineralization, and thermal adaptation.Appl Environ Microbiol. 1986 Dec;52(6):1242-6. doi: 10.1128/aem.52.6.1242-1246.1986. Appl Environ Microbiol. 1986. PMID: 3098170 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources