Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Sep;118(5):1177-88.
doi: 10.1083/jcb.118.5.1177.

The motile beta/IC1 subunit of sea urchin sperm outer arm dynein does not form a rigor bond

Affiliations

The motile beta/IC1 subunit of sea urchin sperm outer arm dynein does not form a rigor bond

A G Moss et al. J Cell Biol. 1992 Sep.

Abstract

We used in vitro translocation and cosedimentation assays to study the microtubule binding properties of sea urchin sperm outer arm dynein and its beta/IC1 subunit. Microtubules glided on glass-absorbed sea urchin dynein for a period of time directly proportional to the initial MgATP2- concentration and then detached when 70-95% of the MgATP2- was hydrolyzed. Detachment resulted from MgATP2- depletion, because (a) perfusion with fresh buffer containing MgATP2- reconstituted binding and gliding, (b) microtubules glided many minutes with an ATP-regenerating system at ATP concentrations which alone supported gliding for only 1-2 min, and (c) microtubules detached upon total hydrolysis of ATP by an ATP-removal system. The products of ATP hydrolysis antagonized binding and gliding; as little as a threefold excess of ADP/Pi over ATP resulted in complete loss of microtubule binding and translocation by the beta/IC1 subunit. In contrast to the situation with sea urchin dynein, microtubules ceased gliding but remained bound to glass-absorbed Tetrahymena outer arm dynein when MgATP2- was exhausted. Cosedimentation assays showed that Tetrahymena outer arm dynein sedimented with microtubules in an ATP-sensitive manner, as previously reported (Porter, M.E., and K. A. Johnson. J. Biol. Chem. 258: 6575-6581). However, the beta/IC1 subunit of sea urchin dynein did not cosediment with microtubules in the absence of ATP. Thus, this subunit, while capable of generating motility, lacks both structural and rigor-type microtubule binding.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Anal Biochem. 1976 May 7;72:248-54 - PubMed
    1. J Cell Biol. 1991 Mar;112(6):1189-97 - PubMed
    1. Soc Gen Physiol Ser. 1975;30:207-32 - PubMed
    1. J Cell Biol. 1978 Jun;77(3):R19-26 - PubMed
    1. J Cell Biol. 1978 Dec;79(3):827-32 - PubMed

Publication types