Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Apr;11(2):165-9.
doi: 10.1007/BF01025221.

Structural analysis of seminal and serum human transferrin by second derivative spectrometry and fluorescence measurements

Affiliations
Comparative Study

Structural analysis of seminal and serum human transferrin by second derivative spectrometry and fluorescence measurements

G D'Andrea et al. J Protein Chem. 1992 Apr.

Abstract

Denaturation of human seminal transferrin (HSmT) compared with human serum transferrin (HSrT) was followed to check structural differences between these two proteins. Second derivative UV spectroscopy indicated that treatment with 6 M guanidine hydrochloride (Gnd.HCl) induced greater structural changes in HSrT than in HSmT and, in particular; (i) the exposure value of tyrosinyl residues was almost 2.5-fold higher in native HSmT than in native HSrT; and (ii) a much more pronounced movement of tryptophanyl residues toward a higher polar environment could be noticed in HSrT after incubation with denaturing agent. Fluorescence measurements showed that: (i) a shift of the maximum emission wavelength of HSmT occurred (maximum emission was centered at 333 nm instead of 323 nm as for HSrT; excitation = 280 nm); (ii) the intrinsic tryptophan fluorescence intensity of HSmT increased after 36 hr in the range of 1.5-4.0 M of denaturant, whereas an opposite behavior was found for HSrT in the range 0.0-2.0 M; and (iii) the wavelength maximum of fluorescence emission changed in a biphasic manner for HSrT and, conversely, under the same experimental conditions, HSmT gave a linear and parallel increase of fluorescence emission after 1 and 36 hr. We can conclude that this different behavior of HSmT with respect to HSrT might be due mainly to the fact that both the number and the exposure of tyrosinyl and tryptophanyl residues are different. Lately, these effects are discussed in relationship with the fact that HSmT contains less than half disulphide bridges than HSrT.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biol Chem. 1983 Mar 25;258(6):3543-53 - PubMed
    1. Biochemistry. 1988 Sep 6;27(18):6883-92 - PubMed
    1. Biochem J. 1980 Sep 1;189(3):541-6 - PubMed
    1. J Chromatogr. 1991 Mar 1;540(1-2):187-98 - PubMed
    1. Cell Mol Biol. 1987;33(5):593-9 - PubMed

Publication types