Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Sep 22;31(37):8916-23.
doi: 10.1021/bi00152a031.

Metabolic heterogeneity of carbon substrate utilization in mammalian heart: NMR determinations of mitochondrial versus cytosolic compartmentation

Affiliations

Metabolic heterogeneity of carbon substrate utilization in mammalian heart: NMR determinations of mitochondrial versus cytosolic compartmentation

E D Lewandowski. Biochemistry. .

Abstract

Carbon-13 (13C) nuclear magnetic resonance (NMR) spectroscopy can be used to target specific pathways of intermediary metabolism within intact tissues and was employed in this study to evaluate the compartmentation of pyruvate metabolism between the cytosol and mitochondrial matrix. The distribution of 13C into the tissue alanine, lactate, and glutamate pools was evaluated during metabolism of [3-13C]-pyruvate in intact, isolated perfused rabbit hearts with and without activation of pyruvate dehydrogenase activity by dichloroacetate (5 mM). Equilibrium between the intracellular alanine and pyruvate pools was in evidence from the rapid evolution of the steady-state 13C signal arising from the 3-carbon of alanine in intact hearts perfused with 2.5 mM 99.4% [3-13C]pyruvate. Augmented pyruvate oxidation, in response to perfusion with dichloroacetate, was evident within 13C NMR spectra of intact hearts as a relative increase in signal intensity of 53-62% (p less than 0.05) from the 4-carbon resonance of 13C-enriched glutamate when compared to the unaffected alanine signal. The increased bulk flow of [3-13C]pyruvate into the tricarboxylic acid cycle in response to dichloroacetate resulted in elevated fractional enrichment of glutamate from 68% in controls to 83% in the treated group (p less than 0.04), via interconversion with alpha-ketoglutarate, without changes in the actual tissue content of glutamate. Evidence of metabolic heterogeneity of cytosolic and mitochondrial pyruvate pools was also obtained from analysis of tissue extracts with in vitro NMR spectroscopy.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types