Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Sep 21;1110(1):29-36.
doi: 10.1016/0005-2736(92)90290-3.

Effects of poly(L-lysine) on the structural and thermotropic properties of dipalmitoylphosphatidylglycerol bilayers

Affiliations

Effects of poly(L-lysine) on the structural and thermotropic properties of dipalmitoylphosphatidylglycerol bilayers

H Takahashi et al. Biochim Biophys Acta. .

Abstract

The effects of poly(L-lysine) on the structural and thermotropic properties of dipalmitoylphosphatidylglycerol (DPPG) bilayers were studied with differential scanning calorimetry (DSC), X-ray diffraction and freeze-fracture electron microscopy. For thermal behavior, in the DPPG/poly(L-lysine) system the main transition temperature rises to 45.7 degrees C and the pretransition disappears in opposition to pure DPPG vesicles. An additional transition appears approximately at 36 degrees C for the DPPG/poly(L-lysine) system after incubation at 4 degrees C for two months. The incubated sample gives a X-ray diffraction pattern having several additional reflections in the range of 0.2-0.9 nm at 15 degrees C. These results suggest that even in the presence of poly(L-lysine) the DPPG bilayers form the subgel (Lc) phase after the long incubation at a low temperature. The X-ray diffraction measurements indicate that the structure of the Lc phase for DPPG/poly(L-lysine) system is different from that of pure DPPG bilayers. On the other hand, in the gel (L beta') phase, the wide-angle X-ray diffraction pattern suggests that the presence of poly(L-lysine) hardly affects the packing of hydrocarbon chains in the DPPG bilayers. The small-angle X-ray diffraction and freeze-fracture electron microscopy exhibit that the DPPG/poly(L-lysine) system forms a tightly packed multilamellar structure in which the poly(L-lysine) is intercalated between the subsequent DPPG bilayers.

PubMed Disclaimer

Publication types