Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor
- PMID: 139409
Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor
Abstract
Choleragen catalyzed the hydrolysis of NAD to ADP-ribose and nicotinamide; nicotinamide production was dramatically increased by L-arginine methyl ester and to a lesser extent by D- or L-arginine, but not by other basic amino acids. Guanidine was also effective. Nicotinamide formation in the presence of L-arginine methyl ester was greatest under conditions previously shown to accelerate the hydrolysis of NAD by choleragen (Moss, J., Manganiello, V. C., and Vaughan, M. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 4424-4427). After incubation of [adenine-U14C]NAD and L[3H]arginine with coleragen, a product was isolated by thin layer chromatography that contained adenine and arginine in a 1:1 ratio and has been tentatively identified as ADP-ribose-L-arginine. Parallel experiments with [carbonyl-14C]NAD have demonstrated that formation of the ADP-ribosyl-L-arginine derivative was associated with the production of [carbonyl-14C]nicotinamide. As guanidine itself was active and D- and L-arginine was equally effective in promoting nicotinamide production, whereas citrulline, which possesses a ureido rather than a guanidino function, was inactive, it seems probable that the guanidino group rather than the alpha-amino moiety participated in the linkage to ADP-ribose. Based on the assumption that the ADP-ribosylation of L-arginine by choleragen is a model for the NAD-dependent activation of adenylate cyclase by choleragen, it is proposed that the active A protomer of choleragen catalyzes the ADP-ribosylation of an arginine, or related amino acid residue in a protein, which is the cyclase itself or is critical to its activation by choleragen.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials