Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1962 Oct;84(4):841-58.
doi: 10.1128/jb.84.4.841-858.1962.

Nutrition, growth, and morphogenesis of Mucor rouxii

Nutrition, growth, and morphogenesis of Mucor rouxii

S BARTNICKI-GARCIA et al. J Bacteriol. 1962 Oct.

Abstract

Bartnicki-Garcia, S. (Rutgers, The State University, New Brunswick, N.J.) and Walter J. Nickerson. Nutrition, growth, and morphogenesis of Mucor rouxii. J. Bacteriol. 84:841-858. 1962.-Mucor rouxii was grown under three different atmospheres of incubation: air, N(2), and CO(2) in parallel cultures. The atmosphere of incubation markedly affected nutritional requirements, growth, and morphogenesis. Absence of oxygen greatly reduced growth and increased the nutritional demands of the fungus. Presence of a high tension of CO(2) resulted in a change from filamentous to yeastlike morphogenesis. Aerobically, a large variety of carbon sources was utilized; anaerobically, only hexoses served to meet requirements for carbon and energy. Aerobically, various amino acids supported abundant growth; anaerobically, they were poorly utilized. Ammonium and nitrate ions were better sources of nitrogen for anaerobic growth. In general, incubation under either air or N(2) resulted in development of coenocytic filamentous mycelium, whereas incubation under CO(2) resulted in development of budding yeastlike cells. Variations in temperature and time of incubation, inoculum size, type and concentration of carbon source, type of nitrogen source, and presence of various substances with known action on fungal morphogenesis altered growth in many cases, but did not significantly affect the patterns of vegetative morphogenesis conditioned by each atmosphere of incubation. However, vegetative morphogenesis was strongly affected by addition of certain chelating agents. Yeastlike development of M. rouxii was prevented by ethylene-diaminetetraacetic acid (EDTA) in concentrations which were also partially inhibitory for growth; under these conditions, development was filamentous. Chemically related chelating agents were similarly active. The growth-inhibitory and morphogenetic effects of EDTA were reversed by transition-group metal ions. Yeastlike development of M. subtilissimus, which does not require CO(2) for its induction, was also inhibited by EDTA.

PubMed Disclaimer

References

    1. J Bacteriol. 1962 Oct;84:829-40 - PubMed
    1. Science. 1949 May 20;109(2838):509-11 - PubMed
    1. Biochim Biophys Acta. 1961 Sep 2;52:176-83 - PubMed
    1. J Bacteriol. 1961 Jul;82(1):142-8 - PubMed
    1. Biochim Biophys Acta. 1962 Mar 26;58:102-19 - PubMed

LinkOut - more resources