Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Oct;202(2):532-40.
doi: 10.1016/0014-4827(92)90108-k.

Basal levels of max are sufficient for the cotransformation of C3H10T1/2 cells by ras and myc

Affiliations

Basal levels of max are sufficient for the cotransformation of C3H10T1/2 cells by ras and myc

E A Davenport et al. Exp Cell Res. 1992 Oct.

Abstract

The ras and myc oncoproteins cooperate to transform the established murine fibroblast cell line C3H10T1/2. To determine the impact of overexpression of the myc oncoprotein on the phenotype of C3H10T1/2 cells, two C3H10T1/2-myc clonal cell lines, SVc-myc 11A and myc neo 13A, were isolated and characterized. Although both C3H10T1/2-myc cell lines are morphologically indistinguishable from wild-type C3H10T1/2 cells and possess growth properties similar to those of C3H10T1/2 cells, each displays a predisposition to transformation following transfection with the activated form of the human H-ras gene. In C3H10T1/2 cells overexpressing the v-myc or H-ras oncogenes, the levels of mRNA encoding max, the recently identified oligomerization partner of myc, remain unchanged, suggesting that the endogenous level of max in C3H10T1/2 cells is sufficient for a high frequency of transformation by ras and myc. Based on these studies, the C3H10T1/2-myc clonal cell lines we describe are suitable model systems for examining the molecular role of the myc protein in transformation and for characterizing additional factors that synergize with myc in multistep transformation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources