Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Oct;41(10):1360-5.
doi: 10.2337/diab.41.10.1360.

Human small intestine facilitative fructose/glucose transporter (GLUT5) is also present in insulin-responsive tissues and brain. Investigation of biochemical characteristics and translocation

Affiliations

Human small intestine facilitative fructose/glucose transporter (GLUT5) is also present in insulin-responsive tissues and brain. Investigation of biochemical characteristics and translocation

P R Shepherd et al. Diabetes. 1992 Oct.

Abstract

A recent study by C.F. Burant et al. (13) demonstrates that GLUT5 is a high-affinity fructose transporter with a much lower capacity to transport glucose. To characterize the potential role of GLUT5 in fructose and glucose transport in insulin-sensitive tissues, we investigated the distribution and insulin-stimulated translocation of the GLUT5 protein in human tissues by immunoblotting with an antibody to the COOH-terminus of the human GLUT5 sequence. GLUT5 was detected in postnuclear membranes from the small intestine, kidney, heart, four different skeletal muscle groups, and the brain, and in plasma membranes from adipocytes. Cytochalasin-B photolabeled a 53,000-M(r) protein in small intestine membranes that was immunoprecipitated by the GLUT5 antibody; labeling was inhibited by D- but not L-glucose. N-glycanase treatment resulted in a band of 45,000 M(r) in all tissues. Plasma membranes were prepared from isolated adipocytes from 5 nonobese and 4 obese subjects. Incubation of adipocytes from either group with 7 nM insulin did not recruit GLUT5 to the plasma membrane, in spite of a 54% insulin-stimulated increase in GLUT4 in nonobese subjects. Thus, GLUT5 appears to be a constitutive sugar transporter that is expressed in many tissues. Further studies are needed to define its overall contribution to fructose and glucose transport in insulin-responsive tissues and brain.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources