Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Oct;60(10):3971-8.
doi: 10.1128/iai.60.10.3971-3978.1992.

Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria

Affiliations

Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria

A P Corfield et al. Infect Immun. 1992 Oct.

Abstract

Oligosaccharide side chains of human colonic mucins contain O-acetylated sialic acids and glycosulfate esters. Although these substituents are considered to protect the chains against degradation by bacterial glycosidases, sialate O-acetylesterase, N-acetylneuraminate lyase, and glycosulfatase activities have been found in fecal extracts. To better define the source of these activities, we measured extracellular and cell-bound sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities produced by 23 isolates of human fecal bacteria grown anaerobically in a hog gastric mucin culture medium; these represented dominant populations of fecal anaerobes, facultative anaerobes, and the subset of mucin oligosaccharide-degrading bacteria. Every strain produced sialidase and high levels of arylesterase, and all but five facultative anaerobes produced sialate O-acetylesterase. Sialic acids containing 2 mol or more of O-acetyl ester per mol of sialic acid were cleaved from mucin glycoproteins more slowly by sialidases of mucin oligosaccharide-degrading stains than were sialic acids containing 1 or 0 mol, and only N-acetyl- and mono-O-acetylated sialic acids were recovered from enzyme digests of a mucin containing di-O-acetylated sialic acids. No detectable N-acetylneuraminate lyase activity was produced by any strain, but low activity was induced by increasing the glycoprotein-bound sialic acid concentration in the culture medium of six Escherichia coli strains. Using lactitol-6-sulfate as a substrate, we found weak glycosulfatase activity in the partially purified, concentrated enzyme mixture in the culture supernatants of four mucin oligosaccharide-degrading strains but in none of the unconcentrated culture fractions. We conclude that the presence of two or more O-acetyl groups on sialic acids inhibits enteric bacterial sialidases but that production of sialate O-acetylesterases by several populations of enteric bacteria lessens the likelihood that mucin oligosaccharide chains terminating in O-acetylated sialic acids are protected from degradation. Sialate O-acetylesterases have a role in bacterial degradation of mucin glycoproteins in the human colon.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Biochem J. 1987 Sep 1;246(2):287-94 - PubMed
    1. J Biol Chem. 1951 Nov;193(1):265-75 - PubMed
    1. Cancer Res. 1988 Jan 15;48(2):483-9 - PubMed
    1. J Biol Chem. 1988 Aug 5;263(22):10790-8 - PubMed
    1. Clin Gastroenterol. 1986 Oct;15(4):815-37 - PubMed

Publication types