Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Oct 15;267(29):20857-65.

Calcium-activated neutral protease effects upon skeletal muscle sarcoplasmic reticulum protein structure and calcium release

Affiliations
  • PMID: 1400400
Free article

Calcium-activated neutral protease effects upon skeletal muscle sarcoplasmic reticulum protein structure and calcium release

J S Gilchrist et al. J Biol Chem. .
Free article

Abstract

In this study, the effects of Ca(2+)-activated neutral protease (CANP) upon skeletal muscle heavy sarcoplasmic reticulum (HSR) structure and function were investigated. CANP was immunolocalized to the 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid detergent-insoluble fraction of purified HSR membranes. Ca2+ activation of the endogenous membrane-bound CANP produced a characteristic partial fragmentation of the HSR 565-kDa Ca2+ release channel. Similarly, the major substrate for both micromolar and millimolar Ca(2+)-sensitive isoforms of exogenous CANP was the Ca2+ release channel with proteolysis of a 88-kDa HSR protein also observed. Ca2+ release channel proteolysis was initiated at a single cleavage site with coincidental production of 410- and 150-kDa peptide fragments. Appearance of 160- and 137-kDa limiting peptides accompanied secondary proteolysis of the primary 410- and 150-kDa fragments, respectively. Despite extensive proteolysis of the Ca2+ release channel, CANP did not dramatically alter the Ca2+ handling and ryanodine binding properties of HSR membranes. The association of CANP with isolated HSR membranes suggests that, in vivo, this protease may modify an additional property of the Ca2+ release channel. This may be related to the CANP-susceptible structural association of the Ca2+ release channel with dihydropyridine receptors at T-tubule/sarcoplasmic reticulum junctions.

PubMed Disclaimer

Publication types

LinkOut - more resources