Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Oct 25;267(30):21782-6.

Assembly of the oligomeric membrane pore formed by Staphylococcal alpha-hemolysin examined by truncation mutagenesis

Affiliations
  • PMID: 1400487
Free article

Assembly of the oligomeric membrane pore formed by Staphylococcal alpha-hemolysin examined by truncation mutagenesis

B Walker et al. J Biol Chem. .
Free article

Abstract

The alpha-hemolysin (alpha HL) from Staphylococcus aureus causes the lysis of susceptible cells such as rabbit erythrocytes (rRBCs). Lysis is associated with the formation of a hexameric pore in the plasma membrane. Here we show that truncation mutants of alpha HL missing 2 to 22 N-terminal amino acids form oligomers on the surfaces of rRBCs but fail to lyse the cells. By contrast, mutants missing 3 or 5 amino acids at the C terminus are very inefficient at oligomerization but do lyse rRBCs, albeit extremely slowly. The C-terminal truncation mutants, retarded as monomers on the cell surface, undergo a conformational change in which the protease-sensitive loop located near the midpoint of the polypeptide chain becomes occluded. Judged by this criterion, polypeptides truncated at the N terminus, frozen as nonlytic oligomers, are in a similar conformation. A second proteolytic site near the N terminus of the polypeptide becomes inaccessible in the lytic pore formed by the wild-type polypeptide, supporting the idea that a second conformational change occurs upon pore formation. These findings suggest a pathway for assembly of the lytic pore in which alpha HL first binds to target cells as a monomer, which is converted to a nonlytic oligomeric intermediate before formation of the pore. In keeping with this model, an N-terminal truncation mutant blocks the slow lysis induced by a C-terminal truncation mutant, presumably by diverting the weakly lytic subunits into inactive oligomers.

PubMed Disclaimer

Publication types

LinkOut - more resources