Mechanical properties of the human lumbar anterior longitudinal ligament
- PMID: 1400518
- DOI: 10.1016/0021-9290(92)90074-b
Mechanical properties of the human lumbar anterior longitudinal ligament
Abstract
A new technique incorporating a motion analysis system and a materials testing machine was used to investigate regional differences in the tensile mechanical properties of the lumbar spine anterior longitudinal ligament (ALL). Bone-ALL-bone specimens were prepared from young human cadaveric motion segments with no disc or bony pathology. Each specimen was distracted until failure at a constant crosshead displacement rate of 2.5 mm s-1 (approximately 1.0% strain per second). Strains were evaluated from digitized video recordings of markers attached to the ALL at 12 sites along its length and width, including the ligament substance and insertions. The 'overall' strain in the ligament was calculated from the outermost pairs of markers along the ligament length. The average tensile strength, the 'overall' tensile modulus and the 'overall' strain of the ALL at failure were 27.4 MPa (S.D. 5.9), 759 MPa (S.D. 336) and 4.95% (S.D. 1.51), respectively. Large and significant variations in the strains were present along the width and length of the ALL. Peak substance strains were over twofold greater than peak strains at the ligament insertion sites, whereas across the ligament width, peak strains in the outer portion of the ligament were over 40% greater than in the central region. Failure consistently occurred in the ligament mid-substance and ultimate strains at the ligament failure site averaged 12.1% (S.D. 2.3). These results indicate that the strains are highly nonuniform in the normal ALL.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources