Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Oct;90(4):1386-95.
doi: 10.1172/JCI116005.

Glucose transport in human skeletal muscle cells in culture. Stimulation by insulin and metformin

Affiliations

Glucose transport in human skeletal muscle cells in culture. Stimulation by insulin and metformin

V Sarabia et al. J Clin Invest. 1992 Oct.

Abstract

Primary human muscle cell cultures were established and the regulation of glucose transport was investigated. Primary cultures were allowed to proceed to the stage of myotubes through fusion of myoblasts or were used for clonal selection based on fusion potential. In clonally selected cultures, hexose (2-deoxy-glucose) uptake into myotubes was linear within the time of study and inhibitable by cytochalasin B (IC50 = 400 nM). Cytochalasin B photolabeled a protein(s) of 45,000-50,000 D in a D-glucose-protectable manner, suggesting identity with the glucose transporters. In the myotube stage, the cells expressed both the GLUT1 and GLUT4 glucose transporter protein isoforms at an average molar ratio of 7:1. Preincubation in media of increasing glucose concentrations (range 5-25 mM) progressively decreased the rate of 2-deoxyglucose uptake. Insulin elevated 2-deoxyglucose uptake in a dose-dependent manner, with half maximal stimulation achieved at 3.5 nM. Insulin also stimulated the transport of the nonmetabolizable hexose 3-O-methylglucose, as well as the activity of glycogen synthase, responsible for nonoxidative glucose metabolism. The oral antihyperglycemic drug metformin stimulated the cytochalasin B-sensitive component of both 2-deoxyglucose and 3-O-methylglucose uptake. Maximal stimulation was observed at 8 h of exposure to 50 microM metformin, and this effect was not prevented by incubation with the protein-synthesis inhibitor cycloheximide. The relative effect of metformin was higher in cells incubated in 25 mM glucose than in 5 mM glucose, consistent with its selective action in hyperglycemic conditions in vivo. Metformin (50 microM for 24 h) was more effective than insulin (1 microM for 1 h) in stimulating hexose uptake and the hormone was effective on top of the stimulation caused by the biguanide, suggesting independent mechanisms of action.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Clin Invest. 1988 Aug;82(2):486-94 - PubMed
    1. Diabetes. 1987 May;36(5):632-40 - PubMed
    1. Diabete Metab. 1986 Aug;12(4):212-8 - PubMed
    1. Am J Physiol. 1985 Sep;249(3 Pt 1):C233-7 - PubMed
    1. Biochem Pharmacol. 1972 Dec 1;21(23):3153-62 - PubMed

Publication types