Corticotectal projections in the cat: anterograde transport studies of twenty-five cortical areas
- PMID: 1401268
- DOI: 10.1002/cne.903240308
Corticotectal projections in the cat: anterograde transport studies of twenty-five cortical areas
Abstract
Retrograde transport studies have shown that widespread areas of the cerebral cortex project upon the superior colliculus. In order to explore the organization of these extensive projections, the anterograde autoradiographic method has been used to reveal the distribution and pattern of corticotectal projections arising from 25 cortical areas. In the majority of experiments, electrophysiological recording methods were used to characterize the visual representation and cortical area prior to injection of the tracer. Our findings reveal that seventeen of the 25 cortical areas project upon some portion of the superficial layers (stratum zonale, stratum griseum superficiale, and stratum opticum, SO). These cortical regions include areas 17, 18, 19, 20a, 20b, 21a, 21b, posterior suprasylvian area (PS), ventral lateral suprasylvian area (VLS), posteromedial lateral suprasylvian area (PMLS), anteromedial lateral suprasylvian area (AMLS), anterolateral lateral suprasylvian area (ALLS), posterolateral lateral suprasylvian area (PLLS), dorsolateral lateral suprasyvian area (DLS), periauditory cortex, cingulate cortex, and the visual portion of the anterior ectosylvian sulcus. While some of these corticotectal projections target all superficial laminae and sublaminae, others are more discretely organized in their laminar-sublaminar distribution. Only the corticotectal projections arising from areas 17 and 18 are exclusively related to the superficial layers. The remaining 15 pathways innervate both the superficial and intermediate and/or deep layers. The large intermediate gray layer (stratum griseum intermedium; SGI) receives projections from almost every cortical area; only areas 17 and 18 do not project ventral to SO. All corticotectal projections to SGI vary in their sublaminar distribution and in their specific pattern of termination. The majority of these projections are periodic, or patchy, and there are elaborate (double tier, bridges, or streamers) modes of distribution. We have attempted to place these findings into a conceptual framework that emphasizes that the SGI consists of sensory and motor domains, both of which contain a mosaic of connectionally distinct afferent compartments (Illing and Graybiel, '85, Neuroscience 14:455-482; Harting and Van Lieshout, '91, J. Comp. Neurol. 305:543-558). Corticotectal projections to the layers ventral to SGI, (stratum album intermediale, stratum griseum profundum, and stratum album profundum) arise from thirteen cortical areas. While an organizational plan of these deeper projections is not readily apparent, the distribution of several corticotectal inputs reveals some connectional parcellation.
Similar articles
-
The lateral suprasylvian corticotectal projection in cats.J Comp Neurol. 1984 May 10;225(2):259-75. doi: 10.1002/cne.902250210. J Comp Neurol. 1984. PMID: 6725646
-
The projection from different visual cortical areas to the rat superior colliculus.J Comp Neurol. 1990 Aug 15;298(3):281-92. doi: 10.1002/cne.902980303. J Comp Neurol. 1990. PMID: 2212104
-
Corticothalamic and corticotectal somatosensory projections from the anterior ectosylvian sulcus (SIV cortex) in neonatal cats: an anatomical demonstration with HRP and 3H-leucine.J Comp Neurol. 1988 Aug 1;274(1):115-26. doi: 10.1002/cne.902740111. J Comp Neurol. 1988. PMID: 2458394
-
Evidence for visual cortical area homologs in cat and macaque monkey.Cereb Cortex. 1993 Jan-Feb;3(1):1-25. doi: 10.1093/cercor/3.1.1. Cereb Cortex. 1993. PMID: 8439738 Review.
-
Do the Different Sensory Areas Within the Cat Anterior Ectosylvian Sulcal Cortex Collectively Represent a Network Multisensory Hub?Multisens Res. 2018 Jan;31(8):793-823. doi: 10.1163/22134808-20181316. Epub 2018 Jun 26. Multisens Res. 2018. PMID: 31157160 Free PMC article. Review.
Cited by
-
Tectal microcircuit generating visual selection commands on gaze-controlling neurons.Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):E1956-65. doi: 10.1073/pnas.1504866112. Epub 2015 Mar 30. Proc Natl Acad Sci U S A. 2015. PMID: 25825743 Free PMC article.
-
Functional impact of cerebral connections.Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7617-20. doi: 10.1073/pnas.94.14.7617. Proc Natl Acad Sci U S A. 1997. PMID: 9207141 Free PMC article.
-
The visuo-motor pathway in the local circuit of the rat superior colliculus.J Neurosci. 1998 Oct 15;18(20):8496-504. doi: 10.1523/JNEUROSCI.18-20-08496.1998. J Neurosci. 1998. PMID: 9763492 Free PMC article.
-
Gaze shifts to auditory and visual stimuli in cats.J Assoc Res Otolaryngol. 2013 Oct;14(5):731-55. doi: 10.1007/s10162-013-0401-4. Epub 2013 Jun 8. J Assoc Res Otolaryngol. 2013. PMID: 23749194 Free PMC article.
-
Glutamate receptors GluR1 and GluR4 in the hamster superior colliculus: distribution and co-localization with calcium-binding proteins and GABA.Acta Histochem Cytochem. 2009 Apr 28;42(2):29-38. doi: 10.1267/ahc.08035. Epub 2009 Mar 31. Acta Histochem Cytochem. 2009. PMID: 19492025 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous