Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 May 10;252(9):3035-43.

Sidedness of (sodium, potassium)-adenosine triphosphate of inside-out red cell membrane vesicles. Interactions with potassium

  • PMID: 140167
Free article

Sidedness of (sodium, potassium)-adenosine triphosphate of inside-out red cell membrane vesicles. Interactions with potassium

R Blostein et al. J Biol Chem. .
Free article

Abstract

Inside-out membrane vesicles of human red cells, prepared according to the method of Steck et al. (1970) Science 168, 255-257) have sufficiently low cation permeability to allow the examination of the side-specific interactions of ligands with the asymmetric sodium pump complex. In accordance with the known properties of the pump in intact cells the following results were observed: (a) ATP-dependent sodium influx and (b) maximal (sodium, potassium)-ATPase with K+ present inside the vesicles with larger than or equal to 20 micronM ATP. With much lower [ATP], K+ inhibited sodium-activated ATPase. K+ was inhibitory at either surface. Inhibition was different on the two sides since cytoplasmic (extravesicular) Na+ counteracted inhibition by cytoplasmic (extravesicular) K+ but not inhibition by K+ at the plasma or external membrane surface, i.e. intravesicular K+. A decrease in the steady state level of the phosphenzyme intermediate of sodium-activated ATPase was caused also by K+ at either surface. The effect of cytoplasmic K+ is compatible with its competitive inhibition of activation of phosphorylation of the enzyme by cytoplasmic Na+. At 37 degrees, the inhibitory effect of external K+ is due to interaction with the phosphoenzyme to form a stable complex of K+ with the dephosphenzyme resulting in a decreased overall reaction rate but increased turnover of the phosphoenzyme (E-P + K leads to EK + Pi). At 0 degree, external K+ inhibits by interacting with the unphosphorylated enzyme to form an occluded enzyme-K complex. This results in a decreased overall rate but relatively small change in apparent turnover of the phosphoenzyme. At 0 degree, but not at 37 degrees, external Na+ counteracted the inhibitory effects of external K+.

PubMed Disclaimer

LinkOut - more resources