Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Sep;50(1):7-10.
doi: 10.1016/0306-4522(92)90377-e.

Nitric oxide mediates the thermal hyperalgesia produced in a model of neuropathic pain in the rat

Nitric oxide mediates the thermal hyperalgesia produced in a model of neuropathic pain in the rat

S T Meller et al. Neuroscience. 1992 Sep.

Abstract

Recent evidence has shown that activation of the N-methyl-D-aspartate receptor mediates the thermal hyperalgesia produced in a model of neuropathic pain. As the acute nociceptive effects of N-methyl-D-aspartate have been reported to be mediated through production of nitric oxide and activation of soluble guanylate cyclase, these experiments were designed to determine whether the thermal hyperalgesia produced in a rat model of neuropathic pain is also mediated through the production of nitric oxide and activation of soluble guanylate cyclase. Loose ligation of the sciatic nerve with chromic gut sutures, but not bilateral sham rats, demonstrated evidence of a marked thermal hyperalgesia on day 3 post-surgery. In bilateral sham rats, intrathecal administration of either an alternate substrate for nitric oxide synthase, NW-nitro-L-arginine methyl ester, or the soluble guanylate cyclase inhibitor, Methylene Blue, did not produce any change in thermal nociceptive withdrawal latencies. These same treatments blocked the thermal hyperalgesia in rats with chromic gut ligatures for a period of 2 and 4 h, respectively. These results suggest that a sustained production of nitric oxide and subsequent activation of soluble guanylate cyclase in the lumbar spinal cord mediate the thermal hyperalgesia produced in a model of neuropathic pain in the rat.

PubMed Disclaimer

Publication types

LinkOut - more resources