Quantitative analysis of protein far UV circular dichroism spectra by neural networks
- PMID: 1409538
- DOI: 10.1093/protein/5.3.191
Quantitative analysis of protein far UV circular dichroism spectra by neural networks
Abstract
A new method based on neural network theory is presented to analyze and quantify the information content of far UV circular dichroism spectra. Using a backpropagation network model with a single hidden layer between input and output, it was possible to deduce five different secondary structure fractions (helix, parallel and antiparallel beta-sheet, beta-turn and random coil) with satisfactory correlations between calculated and measured secondary structure data. We demonstrate that for each wavelength interval a specific network is suitable. The remaining discrepancy between the secondary structure data from neural network prediction and crystallography may be attributed to errors in the determination of protein concentration and random noise in the CD signal, as indicated by simulations.
Similar articles
-
Prediction of protein secondary structure from circular dichroism spectra using artificial neural network techniques.Biochem Mol Biol Int. 1994 Aug;34(1):17-26. Biochem Mol Biol Int. 1994. PMID: 7849619
-
[Determination of secondary structure of globular proteins using circular dichroism spectra].Mol Biol (Mosk). 1990 Jan-Feb;24(1):189-201. Mol Biol (Mosk). 1990. PMID: 2348821 Russian.
-
SOMCD: method for evaluating protein secondary structure from UV circular dichroism spectra.Proteins. 2001 Mar 1;42(4):460-70. doi: 10.1002/1097-0134(20010301)42:4<460::aid-prot50>3.0.co;2-u. Proteins. 2001. PMID: 11170201
-
Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication.Anal Biochem. 1986 May 15;155(1):155-67. doi: 10.1016/0003-2697(86)90241-1. Anal Biochem. 1986. PMID: 3717552
-
Analysis of circular dichroism data.Methods Enzymol. 2004;383:282-317. doi: 10.1016/S0076-6879(04)83012-X. Methods Enzymol. 2004. PMID: 15063655 Review. No abstract available.
Cited by
-
Structural Elucidation of the Cell-Penetrating Penetratin Peptide in Model Membranes at the Atomic Level: Probing Hydrophobic Interactions in the Blood-Brain Barrier.Biochemistry. 2016 Sep 6;55(35):4982-96. doi: 10.1021/acs.biochem.6b00518. Epub 2016 Aug 24. Biochemistry. 2016. PMID: 27532224 Free PMC article.
-
The English (H6R) Mutation of the Alzheimer's Disease Amyloid-β Peptide Modulates Its Zinc-Induced Aggregation.Biomolecules. 2020 Jun 25;10(6):961. doi: 10.3390/biom10060961. Biomolecules. 2020. PMID: 32630528 Free PMC article.
-
Does changing the predicted dynamics of a phospholipase C alter activity and membrane binding?Biophys J. 2013 Jan 8;104(1):185-95. doi: 10.1016/j.bpj.2012.11.015. Epub 2013 Jan 8. Biophys J. 2013. PMID: 23332071 Free PMC article.
-
Identification of a Chemoreceptor for C2 and C3 Carboxylic Acids.Appl Environ Microbiol. 2015 Aug 15;81(16):5449-57. doi: 10.1128/AEM.01529-15. Epub 2015 Jun 5. Appl Environ Microbiol. 2015. PMID: 26048936 Free PMC article.
-
Functional Characterization of the mazEF Toxin-Antitoxin System in the Pathogenic Bacterium Agrobacterium tumefaciens.Microorganisms. 2021 May 20;9(5):1107. doi: 10.3390/microorganisms9051107. Microorganisms. 2021. PMID: 34065548 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Other Literature Sources