Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Oct;14(2):191-201.
doi: 10.1002/prot.340140206.

Structural principles for the propeller assembly of beta-sheets: the preference for seven-fold symmetry

Affiliations

Structural principles for the propeller assembly of beta-sheets: the preference for seven-fold symmetry

A G Murzin. Proteins. 1992 Oct.

Abstract

Twisted beta-sheets, packed face to face, may be arranged in circular formation like blades of a propeller or turbine. This beta-propeller fold has been found in three proteins: that in neuraminidase consists of six beta-sheets while those in methylamine dehydrogenase and galactose oxidase are composed of seven beta-sheets. A model for multisheet packing in the beta-propeller fold is proposed. This model gives both geometrical parameters of the beta-propellers composed of different numbers of sheets and patterns of residue packing at their sheet-to-sheet interfaces. All the known beta-propeller structures have been analyzed, and the observed geometries and residue packing are found to be in good agreement with those predicted by models. It is shown that unusual seven-fold symmetry is preferable to six- or eight-fold symmetry for propeller-like multi-sheet assembly. According to the model, a six-beta-sheet propeller has to have predominantly small residues in the beta-strands closed to its six-fold axis, but no strong sequence constraints are necessary for a seven-fold beta-propeller.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources