Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1992 Jan;166(1):57-73.
doi: 10.1620/tjem.166.57.

Eicosanoids, mesangial contraction, and intracellular signal transduction

Affiliations
Free article
Review

Eicosanoids, mesangial contraction, and intracellular signal transduction

P Mene' et al. Tohoku J Exp Med. 1992 Jan.
Free article

Abstract

The glomerular mesangial cell is a specialized pericyte with multiple functional capabilities including contraction. Mesangial contraction may reduce the glomerular filtration surface area and hence the ultrafiltration coefficient, Kf. Cultured mesangial cells convert arachidonic acid into biologically active eicosanoids which are either contractile (thromboxane A2 [TxA2], prostaglandin F2 alpha [PGE2 alpha]) or relaxant (PGE2, PGI2). The addition of TxA2 analogues, PGE2 or sulfidopeptide leukotrienes (LTC4 and LTD4) stimulated contraction of cultured mesangial cells with threshold responses at approximately 1 nM and maximum responses at 1 microM. PGE2 and PGI2 antagonized mesangial contraction induced by TxA2 analogues. Contraction was enhanced by inhibiting mesangial cyclooxygenase with nonsteroidal antiinflammatory drugs (NSAID). Contractile eicosanoids stimulated phospholipase C thereby elevating intracellular inositol trisphosphate and cytosolic free Ca2+ concentration ([Ca2+]i). Vasorelaxant prostanoids stimulated adenylate cyclase, increasing intracellular cyclic AMP. We conclude that eicosanoids control mesangial contractility by regulating [Ca2+]i and cAMP. NSAID increase mesangial reactivity by blocking the inhibitory effects of endogenous vasodilator eicosanoids, with potential consequences on glomerular hemodynamics.

PubMed Disclaimer

Publication types