Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1992;54(3):217-51.

Modulation of the Ca(2+)-sensitivity in phasic and tonic smooth muscle

Affiliations
  • PMID: 1413985
Review

Modulation of the Ca(2+)-sensitivity in phasic and tonic smooth muscle

B Himpens. Verh K Acad Geneeskd Belg. 1992.

Abstract

This work describes the relationship between the cytoplasmic free calcium concentration ([Ca2+]i) measured by the fluorescent Ca(2+)-indicator fura-2, the phosphorylation of the myosin light chain and the force development in the phasic longitudinal smooth muscle layer of guinea-pig ileum and the tonic rabbit pulmonary artery. The close temporal relationship between the rise in cytoplasmic Ca2+ and the initiation of force development as well as the rather good correlation between cytoplasmic Ca2+ and force maintenance leaves little doubt about cytoplasmic Ca2+ being the primary regulator of force. However the present experimental evidence indicate that [Ca2+]i and force are not invariably tightly coupled in smooth muscle. A dissociation between the time course of [Ca2+]i and force was found in the tonic rabbit pulmonary artery but not in the phasic ileum of the guinea-pig. In contrast, there was a pronounced decline in the Ca(2+)-sensitivity of the contractile apparatus (desensitization to Ca2+) in the guinea-pig ileum during prolonged depolarization, an observation not found in the pulmonary artery. Such desensitization could reflect the activation of highly active myosin light chain phosphatase(s) and the different Ca(2+)-sensitivities of tonic and phasic smooth muscles can, at least in part, be due to differences in myosin light chain kinase/phosphatase activity ratios. The sensitivity of the regulatory/contractile apparatus to Ca2+ was increased by agonists in intact and in permeabilized preparations. Furthermore a different sensitizing potentiation between different agonists was observed. The mechanism of the "sensitization" of the contractile response to Ca2+ could act through the activation of the phosphorylation of a protein phosphatase inhibitor, thereby inhibiting the myosin light chain phosphatase. The experiments therefore show that different levels of tension may be present at the same [Ca2+]i and indicate that the Ca(2+)-sensitivity can be modulated in smooth muscle.

PubMed Disclaimer

Similar articles

MeSH terms

LinkOut - more resources