Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Feb 25;252(4):1414-20.

3-Hydroxy-3-methylgutaryl-CoA synthase. Participation of acetyl-S-enzyme and enzyme-S-hydroxymethylgutaryl-SCoA intermediates in the reaction

  • PMID: 14151
Free article

3-Hydroxy-3-methylgutaryl-CoA synthase. Participation of acetyl-S-enzyme and enzyme-S-hydroxymethylgutaryl-SCoA intermediates in the reaction

H M Miziorko et al. J Biol Chem. .
Free article

Abstract

Acetyl-CoA reacts stoichiometrically with a cysteinyl sufhydryl group of avian liver 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase to yield acetyl-S-enzyme (Miziorko H.M., Clinkenbeard, K.D., Reed, W.D., and Lane, M.D. (1975) J. Biol. Chem. 250, 5768-5773). Evidence that acetyl-S-enzyme condenses with the second substrate, acetoacetyl CoA, to form enzyme-S-HMG-SCoA has been obtained by trapping and characterizing this putative intermediate. [14C]Acetyl-S-enzyme was incubated briefly at -25 degrees with acetoacetyl-CoA, precipitated with trichloroacetic acid, and the labeled acylated enzyme species were isolated. Performic acid oxidation of the precipitated [14C]acyl-S-enzyme intermediates produced volatile [14C]acetic acid from unreacted [14C]acetyl-S-enzyme and nonvolatile [14C]3-hydroxy-3-methyl glutaric acid from enzyme-S-[14C]HMG-SCoA. Condensation of unlabeled acetyl-S-enzyme with [14C]aceto-acetyl-CoA or acetoacetyl-[3H]CoA also produced labeled enzyme-S-HMG-SCoA. Thus, the acetyl moiety from acetyl-CoA and the acetoacetyl and CoA moieties from acetoacetyl-CoA all are incorporated into the HMG-CoA which is covalently-linked to the enzyme. Enzyme-S-[14C]HMG-SCoA was subjected to proteolytic digestion under conditions favorable for intramolecular S to N acyl transfer in the predicted cysteine-S-[14C]HMG-SCoA fragment. Performic acid oxidation of the protease-digested material yields N-[14C]HMG-cysteic acid indicating that HMG-CoA had been covalently bound to the enzyme via the -SH of an active site cysteine. An isotope trapping technique was employed to test the kinetic competence of acetyl-S-enzyme as an intermediate in the HMG-CoA synthase-catalyzed reaction. Evidence is presented which indicates that the rate of condensation of acetoacetyl-CoA with acetyl-S-enzyme to form enzyme-S-HMG-SCoA is more rapid than either the acetylation of the synthase by acetyl-CoA or the overall forward reaction leading to HMG-CoA. These observations, together with indirect evidence that hydrolysis of enzyme-S-HMG-SCoA is extremely rapid, suggest that acetylation of synthase is the rate-limiting step in HMG-CoA synthesis.

PubMed Disclaimer

Publication types

LinkOut - more resources