Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Sep;263(3 Pt 1):C635-41.
doi: 10.1152/ajpcell.1992.263.3.C635.

Ca2+ influx via Na(+)-Ca2+ exchange in immortalized aortic myocytes. II. Feedback inhibition by [Ca2+]i

Affiliations

Ca2+ influx via Na(+)-Ca2+ exchange in immortalized aortic myocytes. II. Feedback inhibition by [Ca2+]i

R M Lyu et al. Am J Physiol. 1992 Sep.

Abstract

Depolarization with 50 mM K+ evoked a spike in cytosolic free Ca2+ ([Ca2+]i) and increased 45Ca2+ uptake in immortalized aortic myocytes. The following evidence indicates that the electrogenic Na(+)-Ca2+ exchanger caused the Ca2+ influx that was evoked by K+ depolarization. First, K+ depolarization had no effect on [Ca2+]i and 45Ca2+ uptake in cells with basal Na+ but strikingly increased both in Na(+)-loaded cells. Second, the [Ca2+]i increases produced by K+ depolarization depended hyperbolically on external Ca2+ (50% maximum concentration = 1.5 mM). Third, the increases in [Ca2+]i and 45Ca2+ uptake were greater when external Na+ was replaced with K+ rather than with N-methyl-D-glucamine or choline. A series of K+ depolarizations elicited a sequence of [Ca2+]i spikes, provided there was a short incubation at 5 mM K+ between the depolarizations. A prior K+ depolarization almost abolished the 45Ca2+ uptake response to K+ depolarization. The inhibition of exchange activity by a prior K+ depolarization required external Ca2+ and was completely reversible. A prior incubation with angiotensin II, platelet-derived growth factor, or ionomycin also inhibited exchange activity. Moderate [Ca2+]i increases probably feedback inhibit Ca2+ influx via the exchanger by a kinetic mechanism. Inactivation of the exchanger, together with Ca2+ extrusion or sequestration, causes the rapid decrease in [Ca2+]i from the peak evoked by depolarization.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

LinkOut - more resources