Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Sep;263(3 Pt 2):H875-80.
doi: 10.1152/ajpheart.1992.263.3.H875.

Hemodynamic effects of exogenous nitric oxide in ovine transitional pulmonary circulation

Affiliations

Hemodynamic effects of exogenous nitric oxide in ovine transitional pulmonary circulation

J P Kinsella et al. Am J Physiol. 1992 Sep.

Abstract

To determine the hemodynamic effects of exogenous nitric oxide (NO) on the immature pulmonary circulation, we studied the response to NO inhalation in 19 mechanically ventilated late-gestation ovine fetuses in three separate protocols. In protocol 1, we examined the relative effects of 1) mechanical ventilation while maintaining fetal arterial O2 tension (PaO2) constant [fractional inspired O2 concentration (FIO2) less than 0.10)], 2) NO inhalation [5-20 parts per million (ppm)] at fetal PaO2, and 3) high FIO2 (1.00) (n = 7). NO increased left pulmonary artery blood flow (Qlpa) in a dose-dependent fashion, from 254 +/- 62 (baseline) to 398 +/- 49 ml/min with 20 ppm NO (P less than 0.001). The response of Qlpa to a FIO2 equal to 1.00 was not different from NO alone. Systemic arterial pressure was not affected by NO. In protocol 2 we studied the effects of prolonged NO inhalation (2 h, 20 ppm) during mechanical ventilation with low FIO2 (n = 4). NO increased Qlpa from 267 +/- 92 to 468 +/- 75 ml/min at 10 min of NO inhalation (P less than 0.001). The increase in Qlpa was sustained during the entire 2-h study period. In protocol 3 we measured left ventricular output (LVO), systemic vascular resistance (SVR), and ductus arteriosus shunting using radiolabeled microspheres (n = 8) during baseline mechanical ventilation and 20 ppm NO inhalation. LVO and SVR were not significantly different in the two study periods; however, the percentage of LVO that reached the lungs (predominantly left-to-right shunting across the ductus arteriosus) increased from 18 +/- 5 to 43 +/- 4% during NO inhalation.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Publication types

LinkOut - more resources