Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Nov 1;298(2):561-8.
doi: 10.1016/0003-9861(92)90450-b.

Activation and inhibition of protein kinase C isozymes alpha and beta by Gd3+

Affiliations

Activation and inhibition of protein kinase C isozymes alpha and beta by Gd3+

M C Maurer et al. Arch Biochem Biophys. .

Abstract

Gd3+ was evaluated as a probe for Ca2+ sites on protein kinase C (PKC) by studying its ability to replace Ca2+ in activation of PKC isozymes II (beta) and III (alpha) in the lipid systems phosphatidylserine/1,2-dioleoyl-sn-glycerol (PS/DO) and diheptanoylphosphatidylcholine (PC7)/DO. PKC beta was stimulated by Ca2+ or Gd3+ in PS/DO whereas activity in PC7/DO was independent of these metals. Thus, it is suggested that Gd3+ replaces Ca2+ at a site involving metal-lipid interactions. High concentrations of Ca2+ or Gd3+ inhibited activity in both lipid systems. Analysis of the Gd3+ inhibition in the PC7/DO system suggests that it is due to formation of GdATP, which competes at the MgATP site. Activity of PKC alpha was dependent on low concentrations of Ca2+ in both lipid systems. The ability of Gd3+ to substitute for Ca2+ could not be evaluated in the PS system due to the inability to completely remove contaminating Ca2+ without chelating buffers. Successful reduction of contaminating Ca2+ was achieved in the PC7 system but Gd3+ failed to substitute for Ca2+ in activating PKC alpha and only caused inhibition. This is consistent with binding of Gd3+ to a Ca2+ site at or near the active site of the enzyme rather than to a site on the lipid. These results indicate that interactions between PKC and Gd3+ are complex, involving occupation of more than one class of sites. Conditions for separately evaluating the individual sites can be manipulated by selection of isozyme and lipid system.

PubMed Disclaimer

Publication types

LinkOut - more resources