Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1964 Sep 25;145(3639):1399-407.
doi: 10.1126/science.145.3639.1399.

RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES

RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES

M NIRENBERG et al. Science. .

Abstract

A rapid, sensitive method is described for measuring C(14)-aminoacyl-sRNA interactions with ribosomes which are specifically induced by the appropriate RNA codewords prior to peptide-bond formation. Properties of the codeword recognition process and the minimum oligonucleotide chain length required to induce such interactions are presented. The trinucleotides, pUpUpU, pApApA, and pCpCpC, but not dinucleotides, specifically direct the binding to ribosomes of phenylalanine-, lysine-, and proline-sRNA, respectively. Since 5'-terminal, 3'-terminal, and internal codewords differ in chemical structure, three corresponding classes of codewords are proposed. The recognition of each class in this system is described. The template efficiency of trinucleotide codewords is modified greatly by terminal phosphate. Triplets with 5'-terminal phosphate are more active as templates than triplets without terminal phosphate. Triplets with 3'- or 3' (2')-terminal phosphate are markedly less active as templates. These findings are discussed in relation to the probable functions of terminal codewords. The modification of RNA and DNA codewords, converting sense into missense or nonsense codewords, is suggested as a possible regulatory mechanism in protein synthesis.

PubMed Disclaimer

LinkOut - more resources