Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Oct 1;287 ( Pt 1)(Pt 1):21-9.
doi: 10.1042/bj2870021.

Biosynthesis of heparin. The D-glucuronosyl- and N-acetyl-D-glucosaminyltransferase reactions and their relation to polymer modification

Affiliations

Biosynthesis of heparin. The D-glucuronosyl- and N-acetyl-D-glucosaminyltransferase reactions and their relation to polymer modification

K Lidholt et al. Biochem J. .

Abstract

Oligosaccharides with the general structure [GlcA-GlcNAc]n-GlcA-aMan (aMan is 2,5-anhydro-D-mannose), derived from the Escherichia coli K5 capsular polysaccharide, were found to serve as monosaccharide acceptors for a GlcNAc-transferase, solubilized from a mouse mastocytoma microsomal fraction and implicated in heparin biosynthesis. Digestion of these oligosaccharides with beta-D-glucuronidase yielded acceptors for the GlcA-transferase that acts in concert with the GlcNAc-transferase. Assays based on the oligosaccharide acceptors showed broad pH optima for the two enzymes, centred around pH 6.5 for the GlcNAc-transferase and around pH 7.0 for the GlcA-transferase. The GlcNAc-transferase showed an absolute requirement for Mn2+, whereas the GlcA-transferase was stimulated by Ca2+ and Mg2+ but not by Mn2+. The GlcNAc acceptor ability of the [GlcA-GlcNAc]n-GlcA-aMan oligosaccharides increased with increasing chain length, as reflected by the apparent Km, which was 60 microM for a hexasaccharide but 6 microM for a hexadecasaccharide. By contrast, the Km for [GlcNAc-GlcA]n-aMan oligosaccharides in the GlcA-transferase reaction was higher, approximately 0.5 mM, and unaffected by acceptor size. After chemical modification of the oligosaccharides to obtain mixed N-substituents (N-unsubstituted, N-acetylated or N-sulphated GlcN residues), GlcNAc transfer was found to be virtually independent of the N-substituent pattern of the acceptor sequence. The GlcA-transferase, on the other hand, showed marked preference for an acceptor with a non-reducing-terminal GlcNAc-GlcA-GlcNSO3- sequence, which would thus have a lower Km for the enzyme than the corresponding fully N-acetylated structure. These results, along with our previous finding that chain elongation in a mastocytoma microsomal system is strongly promoted by concomitant N-sulphation of the nascent chain [Lidholt, Kjellén & Lindahl (1989) Biochem. J. 261, 999-1007], raise the possibility that the glycosyltransferases and the N-deacetylase/N-sulphotransferase act in concert during chain elongation, assembled into an enzyme complex.

PubMed Disclaimer

References

    1. Biochemistry. 1976 Sep 7;15(18):3932-42 - PubMed
    1. J Biol Chem. 1991 May 5;266(13):8044-9 - PubMed
    1. J Biol Chem. 1990 Oct 25;265(30):18284-8 - PubMed
    1. Biochem J. 1986 Jun 1;236(2):313-25 - PubMed
    1. FASEB J. 1988 Jan;2(1):56-9 - PubMed

Publication types

Substances