Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Sep 25;44(6):1131-8.
doi: 10.1016/0006-2952(92)90377-u.

Events that precede and that follow S-(1,2-dichlorovinyl)-L-cysteine-induced release of mitochondrial Ca2+ and their association with cytotoxicity to renal cells

Affiliations

Events that precede and that follow S-(1,2-dichlorovinyl)-L-cysteine-induced release of mitochondrial Ca2+ and their association with cytotoxicity to renal cells

S Vamvakas et al. Biochem Pharmacol. .

Abstract

Previous studies showed that S-(1,2-dichlorovinyl)-L-cysteine perturbs intracellular Ca2+ homeostasis [Vamvakas et al., Mol Pharmacol 38: 455-461, 1990]. The objective of the present study was to investigate the cellular events that precede and that follow S-(1,2-dichlorovinyl)-L-cysteine-induced mitochondrial Ca2+ release. In incubations with isolated kidney mitochondria, S-(1,2-dichlorovinyl)-L-cysteine-induced Ca2+ efflux is preceded by increased oxidation of mitochondrial pyridine nucleotides and is prevented by ATP, an inhibitor of the hydrolysis of pyridine nucleotides, and by meta-iodobenzylguanidine, an acceptor of ADP-ribose moieties. In LLC-PK1 cells, elevation in the cytosolic Ca2+ concentration is followed by a several-fold increase in DNA double-strand breaks which is attributed to the activation of Ca2+- and Mg(2+)-dependent endonucleases. The formation of DNA double-strand breaks is followed by increased poly(ADP-ribosylation) of nuclear proteins. S-(1,2-Dichlorovinyl)-L-cysteine-induced cytotoxicity in LLC-PK1 cells is blocked by chelation of cytosolic Ca2+ with Quin-2, by inhibition of DNA fragmentation with aurintricarboxylic acid and by inhibition of increased poly(ADP-ribosyl)transferase activity by 3-aminobenzamide. These findings indicate that S-(1,2-dichlorovinyl)-L-cysteine bioactivation in renal cells may initiate the following cascade of events: increased oxidation and hydrolysis of mitochondrial pyridine nucleotides resulting in the modification of mitochondrial membrane proteins by pyridine nucleotide-derived ADP-ribose moieties, followed by Ca2+ release. Elevated Ca2+ concentrations may activate Ca(2+)-dependent endonucleases, which leads to DNA fragmentation followed by increased poly(ADP-ribosylation) of nuclear proteins and, finally, cytotoxicity.

PubMed Disclaimer

MeSH terms

LinkOut - more resources