Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Nov 10;31(44):10724-32.
doi: 10.1021/bi00159a012.

1-N-glycyl beta-oligosaccharide derivatives as stable intermediates for the formation of glycoconjugate probes

Affiliations

1-N-glycyl beta-oligosaccharide derivatives as stable intermediates for the formation of glycoconjugate probes

I D Manger et al. Biochemistry. .

Erratum in

  • Biochemistry 1993 Apr 13;32(14):3829

Abstract

Incubation of reducing sugars in ammonium bicarbonate was found to be a simple procedure for the formation of beta-D-glycosylamines of purified complex oligosaccharides in 70-80% yield. These provide valuable intermediates for the synthesis of a wide range of oligosaccharide probes and derivatives by acylation of the 1-amino function. The 1-amino function showed different rates of reactivity with different reagents. In general, interactions with large ring systems such as the fluorophores dansyl chloride and carboxyfluorescein gave 10-20% yields of products, which consisted of mixtures of both anomeric forms, whereas smaller acylating reagents gave near-quantitative yields of the desired beta-D-derivatives. Steric effects may explain differences in reactivity. N-Chloroacetamido derivatives could be obtained in high yield with retention of the beta-anomeric configuration. Subsequent ammonolysis of the chloroacetamido function afforded the corresponding N-glycyl beta-derivatives. The linker thereby introduced retains the amino function, possesses the useful properties of fixed anomeric configuration, improved stability, and uniform reactivity with a variety of reagents, and is structurally analogous to an asparagine side chain. The potential therefore exists for the generation of oligosaccharide derivatives tailored for different applications.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources