Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Nov 13;71(4):637-47.
doi: 10.1016/0092-8674(92)90597-6.

Analysis of a spatially regulated phosphotyrosine phosphatase identifies tyrosine phosphorylation as a key regulatory pathway in Dictyostelium

Affiliations

Analysis of a spatially regulated phosphotyrosine phosphatase identifies tyrosine phosphorylation as a key regulatory pathway in Dictyostelium

P K Howard et al. Cell. .

Abstract

We have cloned a Dictyostelium phosphotyrosine phosphatase (PTP1) with a catalytic domain showing approximately 38%-50% amino acid identity to those of other PTPs. PTP1 contains an approximately 99 amino acid insert and bacterially produced PTP1 possesses PTP activity. PTP1 is expressed at a very low level in vegetative cells, induced by 4 hr, and maximally expressed at the tight aggregate stage. PTP1-lacZ studies indicate that PTP1 is spatially localized to prestalk and anterior-like cell types. PTP1 gene disruptants show accelerated development, whereas strains overexpressing PTP1 to a high level fail to aggregate. Strains overexpressing moderate levels exhibit severe morphological defects following aggregation, including multiply tipped aggregates and morphologically aberrant fruiting bodies. Western blot analysis using anti-phosphotyrosine antibodies shows specific changes in the mutant strains when compared with wild-type cells. The results indicate that reversible protein-tyrosine phosphorylation and PTP1 play important regulatory roles during Dictyostelium development.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources