Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Oct;38(2):91-102.

Regulation of glucose metabolism by free fatty acid availability in septic and nonseptic rats

Affiliations
  • PMID: 1423926
Comparative Study

Regulation of glucose metabolism by free fatty acid availability in septic and nonseptic rats

C H Lang et al. Circ Shock. 1992 Oct.

Abstract

An inhibitory effect of fatty acid oxidation on glucose uptake and oxidation has been demonstrated in heart and skeletal muscle under certain experimental conditions. This reciprocal relationship has been termed the glucose-fatty acid cycle. The purpose of the present study was to determine under in vivo conditions whether this interaction was operational in various nonmuscle tissues, and whether infection altered the activity of this cycle. Oral administration of alpha-methylpalmoxirate (MPA; 75 mg/kg), a known inhibitor of long-chain fatty acid oxidation, suppressed hepatic glucose production by 54% and increased whole body glucose disappearance by 15% in nonseptic rats. In contrast, MPA produced a larger reduction of glucose output in septic rats, but did not enhance glucose disposal. In vivo glucose uptake (Rg) by individual tissues was determined using the tracer 2-deoxyglucose technique. In nonseptic animals, MPA increased Rg in "working" muscles (heart and diaphragm; 12-fold and two-fold respectively), but not in "resting" skeletal muscles. MPA increased the Rg of heart and diaphragm to the same level in septic animals. Inhibition of fatty acid oxidation in nonseptic rats also enhanced Rg in liver (174%), spleen (158%), lung (153%), ileum (52%), skin (28%), kidney (115%), and epididymal fat (135%). In septic rats, MPA only increased Rg in the ileum (23%) and kidney (50%). This increased glucose uptake was independent of increases in plasma glucose and insulin concentrations. The infusion of heparin and intralipid, which increased circulating levels of fatty acids, failed to produce consistent changes in either the whole body glucose turnover or glucose uptake by individual tissues. We conclude that under basal in vivo conditions the inhibition of fatty acid oxidation suppresses glucose production and increases peripheral glucose disposal in nonseptic animals. These data support the presence of the glucose-fatty acid cycle in nonmuscle tissues and emphasizes its importance in whole body glucose homeostasis in situations where fatty acid oxidation is impaired. Infection increases glucose uptake by nonmuscle tissues which, for the most part, cannot be further enhanced by the inhibition of lipid oxidation.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources