Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1965 Apr 9;148(3667):186-92.
doi: 10.1126/science.148.3667.186.

BIOLOGICAL FORMATION OF MOLECULAR HYDROGEN

BIOLOGICAL FORMATION OF MOLECULAR HYDROGEN

C T GRAY et al. Science. .

Abstract

From a general standpoint, the formation of molecular hydrogen can be considered a device for disposal of electrons released in metabolic oxidations. We presume that this means of performing anaerobic oxidations is of ancient origin and that the hydrogen-evolving system of strict anaerobes represents a primitive form of cytochrome oxidase, which in aerobes effects the terminal step of respiration, namely the disposal of electrons by combination with molecular oxygen. We further assume that the original pattern of reactions leading to H(2) production has become modified in various ways (with respect to both mechanisms and functions) during the course of biochemical evolution, and we believe that this point of view suggests profitable approaches for clarifying a number of problems in the intermediary metabolism of microorganisms which produce or utilize H(2). Of special general importance in this connection is the basic problem of defining more precisely the fundamental elements in the regulatory control of anaerobic energy metabolism. Among the more specific aspects awaiting further elucidation are: the relations between formation of H(2) and use of H(2) as a primary reductant for biosynthetic purposes; the various forms of direct and indirect interactions between hydrogenase and N(2) reduction systems; and the transitional stages between anaerobic and aerobic energy-metabolism patterns of facultative organisms.

PubMed Disclaimer

LinkOut - more resources