Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Nov 5;267(31):22407-13.

Molecular cloning of AMP deaminase isoform L. Sequence and bacterial expression of human AMPD2 cDNA

Affiliations
  • PMID: 1429593
Free article
Comparative Study

Molecular cloning of AMP deaminase isoform L. Sequence and bacterial expression of human AMPD2 cDNA

M T Bausch-Jurken et al. J Biol Chem. .
Free article

Abstract

Human AMPD2 cDNA clones have been isolated from T-lymphoblast and placental lambda gt11 libraries utilizing a previously cloned rat partial AMPD2 cDNA as the probe. Alignment analysis of all cDNA clones indicates the presence of intervening sequences in several placental isolates. This has been confirmed by sequencing human AMPD2 genomic clones. Intervening sequences can be removed from the cDNA clones by restriction with endonucleases at unique sites within the proposed open reading frame. This results in a 3292-base pair cDNA proposed to contain the entire AMPD2 open reading frame, which would encode a 760-amino acid polypeptide with a predicted subunit molecular mass of 88.1 kDa. Nucleotide and predicted amino acid comparisons with the 264 base pairs of proposed coding sequences in the rat AMPD2 cDNA demonstrate 91% similarity and identity, respectively. A comparison of the predicted human AMPD1 and AMPD2 polypeptides demonstrates homology in their C-terminal domains. Included in this region is the conserved motif, SLSTDDP, proposed to be part of the catalytic site of all AMP deaminases. In contrast, the predicted N-terminal domains of the human AMPD1 and AMPD2 polypeptides are unique. When placed in a prokaryotic expression vector, the human AMPD2 cDNA expresses AMP deaminase activity which can be precipitated with polyclonal antisera specific for isoform L.

PubMed Disclaimer

Publication types

LinkOut - more resources