Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Nov 25;267(33):23467-70.

Caffeine inhibits the agonist-evoked cytosolic Ca2+ signal in mouse pancreatic acinar cells by blocking inositol trisphosphate production

Affiliations
  • PMID: 1429689
Free article

Caffeine inhibits the agonist-evoked cytosolic Ca2+ signal in mouse pancreatic acinar cells by blocking inositol trisphosphate production

E C Toescu et al. J Biol Chem. .
Free article

Abstract

The inhibitory effects of caffeine on receptor-activated cytosolic Ca2+ signal generation in isolated mouse pancreatic acinar cells were investigated. Using the ability of caffeine to quench Indo-1 fluorescence we measured simultaneously the free intracellular Ca2+ concentration ([Ca2+]i) and the intracellular caffeine concentration ([caffeine]i). We also measured inositol 1,4,5-trisphosphate (InsP3) production with a radioreceptor assay. When caffeine was added to the extracellular solution during a sustained receptor-activated increase in [Ca2+]i, [caffeine]i rose to its steady level within a few seconds. This was accompanied by a decrease of [Ca2+]i, which started only after [caffeine]i had reached an apparent threshold concentration (about 2 mM in the case of 0.5 microM acetylcholine (ACh) stimulation). Above this [caffeine]i level there was a linear relationship between [caffeine]i and [Ca2+]i. Throughout the caffeine exposure [Ca2+]i remained at a steady low level. Following removal of caffeine from the bath, [caffeine]i decreased to zero within seconds. There was no significant increase in [Ca2+]i until [caffeine]i had been reduced to the threshold level (about 2 mM at 0.5 microM ACh). Caffeine inhibited Ca2+ signals evoked by ACh, cholecystokinin, and ATP and also inhibited signals generated in the absence of external Ca2+. Caffeine application had the same effect as removal of agonist allowing recovery from apparent desensitization. Caffeine inhibited the agonist-evoked production of InsP3 in a dose-dependent manner. Our results demonstrate the acute and reversible dose-dependent inhibition of agonist-evoked cytosolic Ca2+ signal generation due to rapid intracellular caffeine accumulation and washout. The inhibition can be explained by the reduction of agonist-evoked InsP3 production.

PubMed Disclaimer

Publication types

LinkOut - more resources