Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Dec 1;264(3):273-92.
doi: 10.1002/jez.1402640307.

Formation of the peripheral nervous system during tail regeneration in urodele amphibians: ultrastructural and immunohistochemical studies of the origin of the cells

Affiliations

Formation of the peripheral nervous system during tail regeneration in urodele amphibians: ultrastructural and immunohistochemical studies of the origin of the cells

J P Arsanto et al. J Exp Zool. .

Abstract

In the regenerating newt tail, epimorphic regeneration--which recapitulates morphologically normal embryonic development--proceeds along a rostrocaudal differentiation gradient. Innervation of the new myomeres results from the spinal roots of segments rostral to the amputation plane and from ventral roots emerging from the lateroventral region of the regenerating spinal cord, in which motor neurons are differentiating. Electron microscopy and an indirect immunofluorescence study with anti-glial fibrillary acid protein (GFAP) confirm that the ventrolateral part of the regenerated ependymal tube gives rise to cells of the ventral root sheath and the spinal ganglia. Anti-GFAP and anti-neurofilament antibodies showed that ependymoglial cells and Schwann cells may play a role in neuronal pathfinding by helping guide and stabilize pioneering axons as they extend toward the myomeres. The carbohydrate epitope NC-1 is expressed in the spinal cord, in sheath cells of the spinal ganglia and in the non-myelin-forming Schwann cells of the peripheral nervous system. L1, a Ca++ independent neural cell adhesion molecule, was detected in the axonal compartments of the regenerating spinal cord, on immature and/or non-myelin-forming Schwann cells within the peripheral nervous system (PNS), and on nerve fibers within the regenerate. These immunohistochemical observations collectively support the hypothesis that Schwann cells already present in the blastema could be involved in organizing neural pathways.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources