Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jul;32(3):395-406.
doi: 10.1002/jnr.490320311.

The morphological localization and biochemical characterization of a synapsin I-like antigen in the nervous system of Aplysia californica

Affiliations

The morphological localization and biochemical characterization of a synapsin I-like antigen in the nervous system of Aplysia californica

M E Bongiovi et al. J Neurosci Res. 1992 Jul.

Abstract

Synapsins are a well-characterized class of phosphoproteins found at synapses in the mammalian nervous system. One member of this family, synapsin I, has been extensively studied and shown to associate in a phosphorylation-dependent manner with both small synaptic vesicles and cytoskeletal elements. Though the characteristics of synapsin I suggest an important function in synaptic transmission, its definitive role is still in question. In an effort to find a model system in which to test directly the function of synapsin I, we have looked in the nervous system of the marine mollusc Aplysia californica for synapsin I-like antigens (SILA). Light microscope immunocytochemical studies using polyclonal and monoclonal antibodies to bovine brain synapsin I demonstrate Aplysia SILA in neuronal somata, in the neuropil, and at some identified synapses. Though SILA were exclusively associated with neuronal structures in Aplysia, the pattern of staining suggested that they are not present at all synaptic terminals. This interpretation was corroborated by ultrastructural studies in which SILA were present at some synaptic terminals but absent, or in low abundance, in adjacent terminals. In axons, SILA were associated with vesicles of 120-150 nm diameter, as well as with filamentous structures. Biochemical studies identified small amounts of SILA of 40 and 50 kD molecular weight that are recognized by several antibodies to mammalian synapsin I, and are acid extractable, collagenase-sensitive phosphoproteins; these are criteria used to define synapsin I homologues in other species. Our studies indicate that SILA are present in neurons in Aplysia californica but suggested that they represent only a small percentage of the total protein within the nervous system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources