Motor learning in a recurrent network model based on the vestibulo-ocular reflex
- PMID: 1436091
- DOI: 10.1038/360159a0
Motor learning in a recurrent network model based on the vestibulo-ocular reflex
Abstract
Most models of neural networks have assumed that neurons process information on a timescale of milliseconds and that the long-term modification of synaptic strengths underlies learning and memory. But neurons also have cellular mechanisms that operate on a timescale of tens or hundreds of milliseconds, such as a gradual rise in firing rate in response to injection of constant current or a rapid rise followed by a slower adaptation. These dynamic properties of neuronal responses are mediated by ion channels that are subject to modulation. We demonstrate here how a neural network with recurrent feedback connections can convert long-term modulation of neural responses that occur over these intermediate timescales into changes in the amplitude of the steady output from the system. This general principle may be relevant to many feedback systems in the brain. Here it is applied to the vestibulo-ocular reflex, whose amplitude is subject to long-term adaptive modification by visual inputs. The model reconciles apparently contradictory data on the neural locus of the cellular mechanisms that mediate this simple form of learning and memory.
Comment in
-
Neural networks. Stitch in time saves design.Nature. 1992 Nov 12;360(6400):104. doi: 10.1038/360104a0. Nature. 1992. PMID: 1436085 No abstract available.
Similar articles
-
A neural network model of the vestibulo-ocular reflex using a local synaptic learning rule.Philos Trans R Soc Lond B Biol Sci. 1992 Sep 29;337(1281):327-30. doi: 10.1098/rstb.1992.0110. Philos Trans R Soc Lond B Biol Sci. 1992. PMID: 1359586
-
Learning in a simple motor system.Learn Mem. 2004 Mar-Apr;11(2):127-36. doi: 10.1101/lm.65804. Learn Mem. 2004. PMID: 15054127 Review.
-
Basic organization principles of the VOR: lessons from frogs.Prog Neurobiol. 2004 Jul;73(4):259-309. doi: 10.1016/j.pneurobio.2004.05.003. Prog Neurobiol. 2004. PMID: 15261395 Review.
-
Implications of noise and neural heterogeneity for vestibulo-ocular reflex fidelity.Neural Comput. 2008 Mar;20(3):756-78. doi: 10.1162/neco.2007.09-06-339. Neural Comput. 2008. PMID: 18045014
-
Intrinsic and synaptic plasticity in the vestibular system.Curr Opin Neurobiol. 2006 Aug;16(4):385-90. doi: 10.1016/j.conb.2006.06.012. Epub 2006 Jul 13. Curr Opin Neurobiol. 2006. PMID: 16842990 Review.
Cited by
-
Computational Principles of Supervised Learning in the Cerebellum.Annu Rev Neurosci. 2018 Jul 8;41:233-253. doi: 10.1146/annurev-neuro-080317-061948. Annu Rev Neurosci. 2018. PMID: 29986160 Free PMC article. Review.
-
Influence of visual experience on developmental shift from long-term depression to long-term potentiation in the rat medial vestibular nuclei.J Physiol. 2004 Nov 1;560(Pt 3):767-77. doi: 10.1113/jphysiol.2004.069658. Epub 2004 Aug 26. J Physiol. 2004. PMID: 15331680 Free PMC article.
-
Neural learning rules for the vestibulo-ocular reflex.J Neurosci. 1998 Nov 1;18(21):9112-29. doi: 10.1523/JNEUROSCI.18-21-09112.1998. J Neurosci. 1998. PMID: 9787014 Free PMC article.
-
Olfactory impairments in patients with unilateral cerebellar lesions are selective to inputs from the contralesional nostril.J Neurosci. 2005 Jul 6;25(27):6362-71. doi: 10.1523/JNEUROSCI.0920-05.2005. J Neurosci. 2005. PMID: 16000626 Free PMC article.
-
Cerebellar AMPA/KA receptor antagonism by CNQX inhibits vestibuloocular reflex adaptation.Exp Brain Res. 2005 Oct;166(2):157-69. doi: 10.1007/s00221-005-2349-z. Epub 2005 Aug 5. Exp Brain Res. 2005. PMID: 16082536
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources