The anticodon triplet is not sufficient to confer methionine acceptance to a transfer RNA
- PMID: 1438273
- PMCID: PMC50423
- DOI: 10.1073/pnas.89.22.10768
The anticodon triplet is not sufficient to confer methionine acceptance to a transfer RNA
Abstract
Previous work suggested that the presence of the anticodon CAU alone was enough to confer methionine acceptance to a tRNA. Conversions of Escherichia coli nonmethionine tRNAs to a methionine-accepting species were obtained by substitutions reconstructing the whole methionine anticodon loop together with preservation (or introduction) of the acceptor stem base A73. We show here that the CAU triplet alone is unable to confer methionine acceptance when transplanted into a yeast aspartic tRNA. Both non-anticodon bases of the anticodon loop of yeast tRNA(Met) and A73 are required in addition to CAU for methionine acceptance. The importance of these non-anticodon bases in other CAU-containing tRNA frameworks was also established. These specific non-anticodon base interactions make a substantial thermodynamic contribution to the methionine acceptance of a transfer RNA.
Similar articles
-
Yeast tRNA(Met) recognition by methionyl-tRNA synthetase requires determinants from the primary, secondary and tertiary structure: a review.Biochimie. 1996;78(7):597-604. doi: 10.1016/s0300-9084(96)80006-x. Biochimie. 1996. PMID: 8955903 Review.
-
Binding of the yeast tRNA(Met) anticodon by the cognate methionyl-tRNA synthetase involves at least two independent peptide regions.J Mol Biol. 1992 Jun 5;225(3):897-907. doi: 10.1016/0022-2836(92)90409-d. J Mol Biol. 1992. PMID: 1602489
-
The presence of a D-stem but not a T-stem is essential for triggering aminoacylation upon anticodon binding in yeast methionine tRNA.J Mol Biol. 1995 May 26;249(1):45-58. doi: 10.1006/jmbi.1995.0279. J Mol Biol. 1995. PMID: 7776375
-
Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases.Nucleic Acids Res. 1992 Sep 25;20(18):4741-6. doi: 10.1093/nar/20.18.4741. Nucleic Acids Res. 1992. PMID: 1408786 Free PMC article.
-
Genetic analysis of translation initiation in bacteria: An initiator tRNA-centric view.Mol Microbiol. 2024 Nov;122(5):772-788. doi: 10.1111/mmi.15243. Epub 2024 Feb 27. Mol Microbiol. 2024. PMID: 38410838 Review.
Cited by
-
Misacylation of tRNA with methionine in Saccharomyces cerevisiae.Nucleic Acids Res. 2012 Nov 1;40(20):10494-506. doi: 10.1093/nar/gks805. Epub 2012 Aug 31. Nucleic Acids Res. 2012. PMID: 22941646 Free PMC article.
-
The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases.EMBO J. 1996 Oct 1;15(19):5437-48. EMBO J. 1996. PMID: 8895587 Free PMC article.
-
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) interacts with Lys-tRNA synthetase: implications for priming of HIV-1 reverse transcription.J Virol. 1998 Apr;72(4):3037-44. doi: 10.1128/JVI.72.4.3037-3044.1998. J Virol. 1998. PMID: 9525626 Free PMC article.
-
The RNA helicase Mtr4p modulates polyadenylation in the TRAMP complex.Cell. 2011 Jun 10;145(6):890-901. doi: 10.1016/j.cell.2011.05.010. Cell. 2011. PMID: 21663793 Free PMC article.
-
The bipartite structure of the tRNA m1A58 methyltransferase from S. cerevisiae is conserved in humans.RNA. 2005 Aug;11(8):1281-90. doi: 10.1261/rna.5040605. RNA. 2005. PMID: 16043508 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous