Fructose metabolism in four Pseudomonas species
- PMID: 143919
- DOI: 10.1007/BF00446874
Fructose metabolism in four Pseudomonas species
Abstract
1. ATP-Dependent phosphorylation of fructose could not be detected in extracts of fructose-grown cells of Pseudomonas extorquens strain 16, Pseudomonas 3A2, Pseudomonas acidovorans and Pseudomonas fluorescens. Instead, phosphorylation of fructose to fructose-1-phosphate was found to occur when cell-free extracts were incubated with fructose and phosphoenolpyruvate. Such an activity could not be detected in cell-free extracts of succinate-grown cells. 2. High levels of 1-phosphofructokinase were found in extracts of the above organisms when growth on fructose. 3. Mutants of Pseudomonas extorquens strain 16 lacking 1-phosphofructokinase were unable to grow on fructose. Revertants to growth on fructose had regained the capacity to synthesize this enzyme, indicating its necessary involvement in fructose metabolism. 4. A survey has been carried out of enzymes involved in carbohydrate metabolism in the species listed above.
Similar articles
-
Catabolism of D-fructose and D-ribose by Pseudomonas doudoroffii. I. Physiological studies and mutant analysis.Arch Microbiol. 1975 Nov 7;105(3):225-40. doi: 10.1007/BF00447141. Arch Microbiol. 1975. PMID: 127561
-
Pathways of D-fructose catabolism in species of Pseudomonas.Arch Microbiol. 1977 Feb 4;112(1):49-55. doi: 10.1007/BF00446653. Arch Microbiol. 1977. PMID: 139135
-
Fructose transport in Bacillus subtilis.Eur J Biochem. 1977 Oct 3;79(2):363-73. doi: 10.1111/j.1432-1033.1977.tb11817.x. Eur J Biochem. 1977. PMID: 200418
-
Enzymes of D-fructose catabolism in species of Beneckea and Photobacterium.Arch Microbiol. 1975 Apr 7;103(2):205-7. doi: 10.1007/BF00436351. Arch Microbiol. 1975. PMID: 125566
-
Phosphorylation of intracellular fructose in Bacillus subtilis mediated by phosphoenolpyruvate-1-fructose phosphotransferase.Eur J Biochem. 1976 Jul 15;66(3):485-91. doi: 10.1111/j.1432-1033.1976.tb10573.x. Eur J Biochem. 1976. PMID: 821752
Cited by
-
Glucose catabolism in strains of acidophilic, heterotrophic bacteria.Appl Environ Microbiol. 1985 Sep;50(3):573-9. doi: 10.1128/aem.50.3.573-579.1985. Appl Environ Microbiol. 1985. PMID: 16346876 Free PMC article.
-
D-xylose catabolism in Bacteroides xylanolyticus X5-1.Arch Microbiol. 1994;161(6):521-7. doi: 10.1007/BF00307774. Arch Microbiol. 1994. PMID: 8048843
-
Distribution of the phosphoenolpyruvate:glucose phosphotransferase system in fermentative bacteria.J Bacteriol. 1979 Jul;139(1):93-7. doi: 10.1128/jb.139.1.93-97.1979. J Bacteriol. 1979. PMID: 457606 Free PMC article.
-
Characterization and genetic mapping of fructose phosphotransferase mutations in Pseudomonas aeruginosa.J Bacteriol. 1982 Mar;149(3):897-905. doi: 10.1128/jb.149.3.897-905.1982. J Bacteriol. 1982. PMID: 6801014 Free PMC article.
-
Identification and organization of carbon dioxide fixation genes in Xanthobacter flavus H4-14.Mol Gen Genet. 1991 Feb;225(2):320-30. doi: 10.1007/BF00269865. Mol Gen Genet. 1991. PMID: 1900916