Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Nov;117(1):110-5.
doi: 10.1016/0041-008x(92)90224-g.

Paraoxon toxicity is not potentiated by prior reduction in blood acetylcholinesterase

Affiliations
Comparative Study

Paraoxon toxicity is not potentiated by prior reduction in blood acetylcholinesterase

S Padilla et al. Toxicol Appl Pharmacol. 1992 Nov.

Abstract

The role of blood acetylcholinesterase in moderating the effects of organophosphate challenge in rats was tested. Adult male rats (n = 42) were injected (iv) either with monoclonal antibodies (MAb) to rat acetylcholinesterase (EC 3.1.1.7; AChE) or normal mouse IgG (controls). Two days later, the rats were injected (sc) with either a mild (0.17 mg/kg) or moderate dosage (0.34 mg/kg) of paraoxon or with vehicle. Neurological integrity was assessed by a functional observational battery followed by motor activity, 3 to 4 hr after dosing. Blood, brain, and diaphragm tissues were then collected for determination of AChE activity. MAb treatment reduced whole blood and plasma AChE activity by 32 and 90%, respectively, but did not affect neurobehavioral parameters or the AChE activity of brain or diaphragm. The paraoxon challenge produced dose-related neurobehavioral changes and inhibition of brain and diaphragm AChE activity to the same extent in IgG- and MAb-treated rats. Thus, significant loss in blood AChE alone produced no detectable neurobehavioral deficits and did not alter the subsequent responses to paraoxon challenge.

PubMed Disclaimer

Publication types

LinkOut - more resources