Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Oct;36(10):2156-65.
doi: 10.1128/AAC.36.10.2156.

Central nervous system targeting of 2',3'-dideoxyinosine via adenosine deaminase-activated 6-halo-dideoxypurine prodrugs

Affiliations
Comparative Study

Central nervous system targeting of 2',3'-dideoxyinosine via adenosine deaminase-activated 6-halo-dideoxypurine prodrugs

M E Morgan et al. Antimicrob Agents Chemother. 1992 Oct.

Abstract

AIDS dementia complex is a neurologic disorder, characterized by increasingly severe cognitive, behavioral, and motor impairment, which is associated with human immunodeficiency virus (HIV) infection in the central nervous system (CNS). Many of the dideoxynucleosides effective systemically in the treatment of HIV infections, such as 2',3'-dideoxyinosine (ddI), exhibit limited penetration into the CNS and limited or variable effectiveness in reversing the symptoms of AIDS dementia. Thus, approaches for increasing the CNS uptake of ddI and other dideoxynucleosides are needed. The CNS uptake of a series of 6-halo-2',3'-dideoxypurine ribofuranosides (6-halo-ddPs) previously shown to be active against HIV because of their conversion to ddI through the action of adenosine deaminase was examined in rats. In vitro studies in rat blood and brain tissue homogenate suggested a favorable selectivity for bioconversion in brain tissue, but with bioconversion half-lives varying widely within the series. In vivo infusions of 6-chloro-ddP (6-Cl-ddP), 6-bromo-ddP (6-Br-ddP), and 6-iodo-ddP (6-I-ddP) resulted in significant increases (20- to 34-fold) in the ddI concentration ratios in brain parenchyma/plasma when compared with those after an infusion of ddI alone. Absolute concentrations of ddI in brain parenchyma were increased 10- and 4-fold, respectively, following 30-min infusions of 6-Cl-ddP or 6-Br-ddP, but were 2.4-fold lower after an infusion of 6-I-ddP relative to that after a control infusion of ddI. Detailed studies of the plasma pharmacokinetics, CNS uptake kinetics, and bioconversion of 6-Cl-ddP were conducted to compare in vivo transport and bioconversion parameters with those predicted from in vitro measurements and to rationalize the efficiency of CNS delivery of ddI from 6-Cl-ddP. The results show that increased lipophilicity alone does not ensure that a given prodrug will deliver higher levels of a parent compound to the CNS. Both the selectivity and absolute rate of bioconversion in the brain are important factors.

PubMed Disclaimer

References

    1. Am J Physiol. 1978 Sep;235(3):H299-307 - PubMed
    1. Comp Biochem Physiol. 1965 Jan;14:101-20 - PubMed
    1. J Pharmacol Exp Ther. 1991 Jun;257(3):972-8 - PubMed
    1. J Pediatr. 1990 Nov;117(5):799-808 - PubMed
    1. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9426-30 - PubMed

Publication types