Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Nov 17;31(45):11249-54.
doi: 10.1021/bi00160a041.

Glutamate 1-semialdehyde aminotransferase: anomalous enantiomeric reaction and enzyme mechanism

Affiliations

Glutamate 1-semialdehyde aminotransferase: anomalous enantiomeric reaction and enzyme mechanism

M A Smith et al. Biochemistry. .

Abstract

Glutamate 1-semialdehyde aminotransferase (GSA-AT) catalyzes near 50% conversion of the racemic mixture of GSA to 5-aminolevulinate (ALA), indicating quantitative use of the L-glutamate-derived natural (S)-enantiomer as substrate. This enzymic reaction has been extensively studied with (R,S)-GSA because it is readily purified in high yields following ozonolysis of racemic 4-vinyl-4-aminobutyric acid. However upon addition of (R,S)-GSA, GSA-aminotransferase is converted to the pyridoxal-P or internal aldimine form (418 nm) and not rapidly cycled back to the original pyridoxamine-P, as predicted by the rate of product (ALA) accumulation. Addition of the putative intermediate, (R,S)-4,5-diaminovalerate (DAVA), eliminates this rapid conversion of the enzyme by (R,S)-GSA to the internal aldimine and stimulates initial rates of ALA synthesis (2-3-fold) and results in corresponding increases in apparent equilibrium concentrations of ALA. These results indicate that DAVA is rate limiting and suggest anomalous reactivity of (R)-GSA. Steady-state and spectral kinetic experiments with individual purified enantiomers confirm anomalous reactivity of (R)-GSA: in the case of (S)-GSA, spectral changes are lesser in amplitude and at least 1 or 2 orders of magnitude more rapid. Only (S)-GSA yielded significant amounts of ALA. Since (R)-GSA is an apparent substrate in the first half-reaction, the resulting (R)-DAVA is either inactive or a poor substrate in the second half-reaction.

PubMed Disclaimer

Similar articles

Cited by

Publication types