Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Dec 1;31(47):11721-30.
doi: 10.1021/bi00162a008.

Thrombin is a Na(+)-activated enzyme

Affiliations
Comparative Study

Thrombin is a Na(+)-activated enzyme

C M Wells et al. Biochemistry. .

Abstract

The amidase activity of human alpha-thrombin has been studied at steady state as a function of the concentration of several chloride salts, at a constant ionic strength I = 0.2 M. All kinetic steps of the catalytic mechanism of the enzyme have been solved by studies conducted as a function of relative viscosity of the solution. Among all monovalent cations, Na+ is the most effective in activating thrombin catalysis. This effect is observed with different amide substrates and also with gamma-thrombin, a proteolytic derivative of the native enzyme which has little clotting activity but retains amidase activity toward small synthetic substrates. The specific effects observed as a function of Na+ concentration are indicative of a binding interaction of this monovalent cation with the enzyme. The basis of this interaction has been explored by measurements of substrate hydrolysis collected in a three-dimensional matrix of substrate concentration, relative viscosity, and Na+ concentration, keeping the ionic strength constant with an inert cation such as choline or tetraethylammonium. The data have globally been analyzed in terms of a kinetic linkage scheme where Na+ plays the role of an allosteric effector. The properties of the enzyme change drastically upon binding of Na+, with substrate binding and dissociation, as well as deacylation, occurring on a time scale which is 1 order of magnitude faster. The apparent association constants for Na+ binding to the various intermediate forms of the enzyme have all been resolved from analysis of experimental data and are in the range of 50-100 M-1 at 25 degrees C. Studies conducted at different temperatures, in the range 15-35 degrees C, have revealed the enthalpic and entropic components of Na+ binding to the enzyme. The results obtained from steady-state measurements are supported by independent measurements of the intrinsic fluorescence of the enzyme as a function of Na+ concentration at a constant ionic strength I = 0.2 M, over the temperature range 15-35 degrees C. These measurements are indicative of a drastic conformational change of the enzyme upon Na+ binding to a single site. The energetics of Na+ binding derived from analysis of fluorescence measurements agree very well with those derived independently from steady-state determinations. It is proposed that thrombin exists in two conformations, slow and fast, and that the slow-->fast transition is triggered by binding of a monovalent cation. The high specificity in thrombin activation found in the case of Na+ is the result of its higher affinity compared to all other monovalent cations.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Publication types

LinkOut - more resources