Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct;54(391):2331-42.
doi: 10.1093/jxb/erg249.

N capture by Plantago lanceolata and Brassica napus from organic material: the influence of spatial dispersion, plant competition and an arbuscular mycorrhizal fungus

Affiliations

N capture by Plantago lanceolata and Brassica napus from organic material: the influence of spatial dispersion, plant competition and an arbuscular mycorrhizal fungus

A Hodge. J Exp Bot. 2003 Oct.

Abstract

This study investigated N capture by Plantago lanceolata L. and Brassica napus L. from complex organic material (dual-labelled with 15N/13C) added either as a thin concentrated layer (discrete patch treatment) or dispersed uniformly with the background sand:soil mix in a 10 cm band (dispersed treatment) when grown in monoculture or in interspecific competition and in the presence or absence of a mycorrhizal inoculum (Glomus mosseae). No 13C enrichments from the organic material were detected in the plant tissues, but 15N enrichments were present. Total plant uptake of N from the organic material on a microcosm basis was not affected by the spatial placement of the organic material, but Plantago monocultures captured less N than the species in interspecific competition (i.e. 23% versus 38% of the N originally added). N capture from Brassica monocultures was no different to either Plantago monocultures or both species in mixture. However, N capture from the organic material by both individual Plantago and Brassica plants was reduced when grown with Brassica plants (by 10-fold and by more than half, respectively). N capture from the organic material was directly related to the estimated root length produced in the sections containing the organic material: the individual that produced the greatest root length captured most N. Strikingly, when the organic material was added as a discrete patch the N captured by Brassica, a non-mycorrhizal species, actually increased when the G. mosseae inoculum was present compared to when G. mosseae was absent (i.e. 35% versus 19% of the N originally added).

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources