Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul;50(1):66-76.
doi: 10.1034/j.1600-0897.2003.00047.x.

Heme oxygenases in pregnancy II: HO-2 is downregulated in human pathologic pregnancies

Affiliations

Heme oxygenases in pregnancy II: HO-2 is downregulated in human pathologic pregnancies

A C Zenclussen et al. Am J Reprod Immunol. 2003 Jul.

Abstract

Problem: We previously reported a diminished expression of the heme-degrading enzymes heme oxygenases (HO)-1 and HO-2 in decidua and placenta from mice undergoing Th1-mediated abortion, strongly indicating the protective effect of HO in murine pregnancy maintenance. Here we investigated whether the expression of HO-1 and HO-2 is also reduced at the feto-maternal interface of pathologic human pregnancies.

Method of study: Immunohistochemistry was used to detect HOs expression in placental and decidual first-trimester tissue from patients with: spontaneous abortion (n = 14), choriocarcinoma (n = 14), hydatidiform mole (H-mole) (n = 12), compared with normally progressing pregnancies (n = 15). Further, we investigated early third-trimester decidual and placental tissue from patients with pre-eclampsia (n = 13) compared with fetal growth retardation (n = 14) as age-matched controls.

Results: In first trimester tissue, we observed a significant reduction of HO-2 expression in invasive trophoblast cells, endothelial cells, and syncytiotrophoblasts in samples from patients with spontaneous abortion compared with normal pregnancy. H-mole samples showed a diminished expression of HO-2 in invasive trophoblast cells and endothelial cells in comparison with NP, whereas choriocarcinoma samples showed no significant differences compared with the control. In third trimester tissue, HO-2 was also reduced in syncytiotrophoblasts and invasive trophoblast cells from pre-eclampsia compared with samples from fetal growth retardation. HO-1 expression was diminished in all pathologies investigated; however, the differences did not reach levels of significance.

Conclusions: Our data indicate that HOs play a crucial role in pregnancy and low expression of HO-2, as observed in pathologic pregnancies, may lead to enhanced levels of free heme at the feto-maternal interface, with subsequent upregulation of adhesion molecules, allowing enhanced inflammatory cells migration to the feto-maternal interface.

PubMed Disclaimer

Publication types

MeSH terms