Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct;50(1):333-47.
doi: 10.1046/j.1365-2958.2003.03690.x.

A biochemical analysis of the interaction of DNA gyrase with the bacteriophage Mu, pSC101 and pBR322 strong gyrase sites: the role of DNA sequence in modulating gyrase supercoiling and biological activity

Affiliations
Free article

A biochemical analysis of the interaction of DNA gyrase with the bacteriophage Mu, pSC101 and pBR322 strong gyrase sites: the role of DNA sequence in modulating gyrase supercoiling and biological activity

Mark Oram et al. Mol Microbiol. 2003 Oct.
Free article

Abstract

Replication of bacteriophage Mu DNA, a process requiring efficient synapsis of the prophage ends, takes place within the confines of the Escherichia coli nucleoid. Critical to ensuring rapid synapsis is the function of the SGS, a strong gyrase site, located at the centre of the Mu genome. Replacement of the SGS by the strong gyrase sites from pSC101 or pBR322 fails to support efficient prophage replication. To probe the unique SGS properties we undertook a biochemical analysis of the interaction of DNA gyrase with the Mu SGS, pSC101 and pBR322 sites. In binding and cleavage assays the order of efficacy was pSC101 > Mu SGS >> pBR322. However, in supercoiling assays the Mu SGS (cloned into pUC19) exhibited a strong enhancement of gyrase-catalysed supercoiling over pUC19 alone; the pSC101 site showed none and the pBR322 site gave a moderate improvement. Most striking was the Mu SGS-dependent increase in processivity of the gyrase reaction. This highly processive supercoiling coupled with efficient binding may account for the unique biological properties of the SGS. The results emphasize the importance of the DNA substrate as an active component in modulating the gyrase supercoiling reaction, and in determining the biological roles of specialized gyrase sites.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources