Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct 3;68(20):7806-10.
doi: 10.1021/jo034768o.

Oxyfunctionalization of non-natural targets by dioxiranes. 5. Selective oxidation of hydrocarbons bearing cyclopropyl moieties

Affiliations

Oxyfunctionalization of non-natural targets by dioxiranes. 5. Selective oxidation of hydrocarbons bearing cyclopropyl moieties

Lucia D'Accolti et al. J Org Chem. .

Abstract

The powerful methyl(trifluoromethyl)dioxirane (1b) was employed to achieve the direct oxyfunctionalization of 2,4-didehydroadamantane (5), spiro[cyclopropane-1,2'-adamantane] (9), spiro[2.5]octane (17), and bicyclo[6.1.0]nonane (19). The results are compared with those attained in the analogous oxidation of two alkylcyclopropanes, i.e., n-butylcyclopropane (11) and (3-methyl-butyl)-cyclopropane (14). The product distributions observed for 11 and 14 show that cyclopropyl activation of alpha-C-H bonds largely prevails when no tertiary C-H are present in the open chain in the tether; however, in the oxyfunctionalixation of 14 cyclopropyl activation competes only mildly with hydroxylation at the tertiary C-H. The application of dioxirane 1b to polycyclic alkanes possessing a sufficiently rigid framework (such as 5 and 9) demonstrates the relevance of relative orientation of the cyclopropane moiety with respect to the proximal C-H undergoing oxidation. At one extreme, as observed in the oxidation of rigid spiro compound 9, even bridgehead tertiary C-H's become deactivated by the proximal cyclopropyl moiety laying in the unfavorable "eclipsed" (perpendicular) orientation; at the other end, a cyclopropane moiety constrained in a favorable "bisected" orientation (as for didehydroadamantane 5) can activate an "alpha" methylene CH2 to compete effectively with dioxirane O-insertion into tertiary C-H bonds. Comparison with literature reports describing similar oxidations by dimethyldioxirane (1a) demonstrate that methyl(trifluoromethyl)dioxirane (1b) presents similar selectivity and remarkably superior reactivity.

PubMed Disclaimer

LinkOut - more resources