Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Dec;23(12):2155-63.
doi: 10.1161/01.ATV.0000097770.66965.2A. Epub 2003 Sep 25.

Novel vascular biology of third-generation L-type calcium channel antagonists: ancillary actions of amlodipine

Affiliations
Review

Novel vascular biology of third-generation L-type calcium channel antagonists: ancillary actions of amlodipine

R P Mason et al. Arterioscler Thromb Vasc Biol. 2003 Dec.

Abstract

Calcium channel blockers (CCBs) were developed as vasodilators, and their use in cardiovascular disease treatment remains largely based on that mechanism of action. More recently, with the evolution of second- and third-generation CCBs, pleiotropic effects have been observed, and at least some of CCBs' benefit is attributable to these mechanisms. Understanding these effects has contributed greatly to elucidating disease mechanisms and the rationale for CCB use. Furthermore, this knowledge might clarify why drugs are useful in some disease states, such as atherosclerosis, but not in others, such as heart failure. Although numerous drugs used in the treatment of vascular disease, including statins and angiotensin-converting-enzyme inhibitors, have well-described pleiotropic effects universally accepted to contribute to their benefit, little attention has been paid to CCBs' potentially similar effects. Accumulating evidence that at least 1 CCB, amlodipine, has pharmacologic actions distinct from L-type calcium channel blockade prompted us to investigate the pleiotropic actions of amlodipine and CCBs in general. There are several areas of research; foci here are (1) the physicochemical properties of amlodipine and its interaction with cholesterol and oxidants; (2) the mechanism by which amlodipine regulates NO production and implications; and (3) amlodipine's role in controlling smooth muscle cell proliferation and matrix formation.

PubMed Disclaimer

MeSH terms

LinkOut - more resources