Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003;71(3):290-8.
doi: 10.1159/000072681.

Pharmacological effects of KRP-197 on the human isolated urinary bladder

Affiliations

Pharmacological effects of KRP-197 on the human isolated urinary bladder

Shigetaka Murakami et al. Urol Int. 2003.

Abstract

KRP-197, 4-(2-methylimidazol-l-yl)-2,2-diphenylbutyramide, is a newly synthesized antimuscarinic drug, developed for the treatment for overactive bladder. For evaluation of pharmacological characteristics of KRP-197, we investigated whether it influenced both prejunctional and postjunctional muscarinic receptors on the isolated human detrusor smooth muscles as compared with the effects of atropine, oxybutynin, and propiverine. Using the muscle bath technique, we investigated the effects of various antimuscarinic drugs on the contractions induced by carbachol, KCl, CaCl(2), and electrical field stimulation. Furthermore, using high-performance liquid chromatography with a microdialysis technique, we measured the acetylcholine release from the muscle strips during electrical field stimulation. The effects of various antimuscarinic drugs on acetylcholine releases were also evaluated. Pretreatment with various antimuscarinic drugs caused parallel shifts to the right in carbachol-induced concentration-response curves. The rank order of pA(2) values was KRP-197 > or = atropine > oxybutynin > propiverine. Atropine and KRP-197 did not cause significant inhibition of KCl- and CaCl(2)-induced contractions. All drugs caused concentration-dependent inhibitions in electrical field stimulation-induced contractions. Pretreatment with atropine and propiverine did not cause significant changes in electrical field stimulation-induced acetylcholine release. However, KRP-197, and oxybutynin caused significant decreases in acetylcholine release. The present study demonstrates that KRP-197 has an inhibitory effect on postjunctional muscarinic receptors as well as on prejunctional muscarinic receptors to modulate acetylcholine release in human detrusor smooth muscles. The findings suggest the usefulness of KRP-197 as a therapeutic drug for an overactive bladder with symptoms of frequency, urgency, and urge incontinence.

PubMed Disclaimer