Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Sep;114(3):1678-90.
doi: 10.1121/1.1600721.

Effect of coupled oscillations on microbubble behavior

Affiliations

Effect of coupled oscillations on microbubble behavior

John S Allen et al. J Acoust Soc Am. 2003 Sep.

Abstract

Ultrasound contrast agents are encapsulated microbubbles whose nonlinear acoustic scattering signatures have been the foundation of their use in diagnostic imaging. The coupled oscillations of microbubbles along their lines of center are investigated theoretically using radial equations in the monopole approximation and an energy balance, which is obtained for the system. Coupled microbubble pairs of different initial radii are investigated numerically relative to the normal modes for the linearized system. For microbubble pairs of different size bubbles driven below the mode of the smaller bubble and above the mode of the larger bubble, it is shown that oscillations of the smaller agent are affected substantially more by the coupling than those of the larger one. For separation distances of 10 and 500 microns, a difference of approximately 10 dB occurs in the second harmonic output of a 1.0-micron radius agent coupled with a 2.2-micron radius agent forced at 2.0 MHz and 0.3 MPa. The subharmonic spectral peak is shown to decrease approximately 19 dB for the coupling of 1.5- and 2.2-micron radius agents at 10- and 500-micron distances under the same acoustic forcing conditions. These coupling effects on the radiated pressure and its spectral power are highlighted for contrast agent imaging applications.

PubMed Disclaimer

Publication types

LinkOut - more resources